YU Fahao, JIANG Zhaoping, BAI Jianhua, LIU Yigang, MENG Xianghai. Determination of the Temperature Resistance Capacity of Sand Control Screen Liner in Horizontal Heavy Oil Wells in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010
Citation: YU Fahao, JIANG Zhaoping, BAI Jianhua, LIU Yigang, MENG Xianghai. Determination of the Temperature Resistance Capacity of Sand Control Screen Liner in Horizontal Heavy Oil Wells in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010

Determination of the Temperature Resistance Capacity of Sand Control Screen Liner in Horizontal Heavy Oil Wells in the Bohai Oilfield

More Information
  • Received Date: September 23, 2017
  • Revised Date: July 29, 2018
  • The current reference temperature resistance capacity for sand control screen liner selection of thermal recovery wells in Bohai Oilfield did not take account the influence of well conditions.Consequently,there was a breakdown of selected sand control screen liner in some thermal recovery wells because they failed to meet the requirements of heat injection.To solve the problem,researchers developed a numerical simulation method for calculating screen liner temperature resistance ability in thermal horizontal wells by means of the mechanical analysis of sand control screen liner in heat injecting conditions.Further,they considered the impact of bending and thermal stress on screen liner failure.Using this method,the temperature resistance capacity of sand control screen liner in six thermal recovery horizontal wells in Bohai Oilfield was calculated.Next,the reduction range of temperature resistance capacity of three types of sand control screen liner,i.e.star mesh,metal mesh and bridge-type composite under unit dog leg severity was analyzed.The results showed that the temperature resistance calculated under the bending stress was in good agreement with the actual situation.In fact,the temperature resistance of three types of sand control screen liner under unit dog leg severity was reduced by 6-16℃.Further,the reduction range of temperature resistance of sand control screen liner under unit dog leg severity increased with sand control screen line size.The higher steel grade of sand control screen liner generated a more limited range of reduced temperature resistance,and the influence of the degree of steel grade was greater than that of screen liner size.The grade TP110H,BG110H metal mesh or bridge-type composite sand control screen liner had high temperature resistance and could meet the heat injection requirements of thermal recovery wells in Bohai Oilfield.Therefore,we could conclude that the effect of bending stress on the temperature resistance capacity of sand control screen liner should be taken into account for selecting sand control screen liner for thermal recovery of heavy oil in horizontal wells.Notably,failing to consider it might cause the failure of sand control,and further affect the development effect of heavy oil thermal recovery.
  • [1]
    王兆会,高德利.热采井套管损坏机理及控制技术研究进展[J].石油钻探技术,2003,31(5):46-48.

    WANG Zhaohui,GAO Deli.The casing damage mechanisms and its control in thermal recovery wells[J].Petroleum Drilling Techniques,2003,31(5):46-48.
    [2]
    王廷瑞,王新卯.五口热采井套管损坏原因分析[J].石油钻探技术,1995,23(1):18-20.

    WANG Tingrui,WANG Xinmao.Cause analysis of casing damage in five thermal recovery wells[J].Petroleum Drilling Techniques,1995,23(1):18-20.
    [3]
    赵益忠,孙磉礅,高爱花,等.稠油油藏蒸汽吞吐井长效防砂技术[J].石油钻探技术,2014,42(3):90-94.

    ZHAO Yizhong,SUN Sangdun,GAO Aihua,et al.Long-term sand control technology for multiple round steam huff and puff wells in heavy oil reservoirs[J].Petroleum Drilling Techniques,2014,42(3):90-94.
    [4]
    罗蒙,王俐,李良庆.热采井用筛管热应力试验技术研究[J].宝钢技术,2013(3):39-44. LUO Meng,WANG Li,LI Liangqing,et al.Research on thermal stress experiment technique for sieve tubes used in thermal recovery wells[J].Bao-Steel Technology,2013

    (3):39-44.
    [5]
    SMITH K,BOWEN E.Testing results of an economical mesh screen for thermal application[R].SPE 170010,2014.
    [6] 隋晓东.热采水平井完井管柱受力分析及优化技术研究[D].东营:中国石油大学(华东),2011. SUI Xiaodong.Completion tubing stress analysis and optimization technology research of thermal horizontal wells[D].Dongying:China University of Petroleum(Huadong),2011.
    [7]
    陈庭根,管志川.钻井工程理论与技术[M].东营:石油大学出版社,2000:166-172. CHEN Tinggen,GUAN Zhichuan.Theory and techniques of drilling engineering[M].Dongying:Petroleum University Press,2000:166

    -172.
    [8]
    王德新,于润桥.套管柱在水平井弯曲井段的可下入性[J].石油钻探技术,1997,25(1):12-13

    ,40. WANG Dexin,YU Runqiao.Trip ability of casing string in the curved interval of horizontal well[J].Petroleum Drilling Techniques,1997,25(1):12-13,40.
    [9] 高德利,高宝奎.水平井段管柱屈曲与摩阻分析[J].石油大学学报(自然科学版),2000,24(2):1-3. GAO Deli,GAO Baokui.Effects of turular buckling on torque and drag in horizontal well[J].Journal of the University of Petroleum,China(Edition of Natural Science),2000,24(2):1-3.
    [10]
    刘坤芳,张兆银,孙晓明,等.注蒸汽井套管热应力分析及管柱强度设计[J].石油钻探技术,1994,22(4):36-40.

    LIU Kunfang,ZHANG Zhaoyin,SUN Xiaoming,et al.Analyses of steam-injected well casing thermal stress and casing string strength design[J].Petroleum Drilling Techniques,1994,22(4):36-40.
    [11] 李静,林承焰,杨少春,等.套管-水泥环-地层耦合系统热应力理论解[J].中国石油大学学报(自然科学版),2009,33(2):63-69. LI Jing,LIN Chengyan,YANG Shaochun,et al.Theoretical solution of thermal stress for casing-cement-formation coupling system[J].Journal of China University of Petroleum(Edition of Natural Science),2009,33(2):63-69.
    [12]
    吴建平.防砂筛管受热变形分析[J].石油钻采工艺,2010,32(1):45-49.

    WU Jianping.Analyzing on sand control screen thermal deformation[J].Oil Drilling & Production Technology,2010,32(1):45-49.
    [13]
    刘正伟,解广娟,张春杰,等.海上稠油热采井防砂筛管热应力分析[J].石油机械,2012,40(2):26-29.

    LIU Zhengwei,XIE Guangjuan,ZHANG Chunjie,et al.A thermal stress analysis of the sand control screen in offshore heavy oil thermal production wells[J].China Petroleum Machinery,2012,40(2):26-29.
    [14]
    任思齐,康志勤,吕义清.热采井套管热固耦合作用数值模拟分析[J].煤炭技术,2017,36(5):301-303.

    REN Siqi,KANG Zhiqin,LYU Yiqing.Numerical simulation of thermal-stress coupling in casing of thermal recovery wells[J].Coal Technology,2017,36(5):301-303.
    [15]
    王兆会,马兆忠.热采井温度对套管性能的影响及预应力值计算方法[J].钢管,2007,36(4):24-27.

    WANG Zhaohui,MA Zhaozhong.Effect by thermal well temperature on casing properties and calculation method for pretension[J].Steel Pipe,2007,36(4):24-27.
    [16] 杨雪春.热处理对稠油热采井专用套管HS110H的组织和性能的影响[J].齐齐哈尔大学学报(自然科学版),2014,30(2):72-76. YANG Xuechun.The impact of heat treatment on thickened oil hot well special casing HS110H organization and property[J].Journal of Qiqihar University(Natural Science Edition),2014,30(2):72-76.
    [17] 宋吉水,张国亮,刘绍轩,等.射孔对套管抗挤强度影响[J].辽宁工程技术大学学报(自然科学版),2008,27(4):523-525. SONG Jishui,ZHANG Guoliang,LIU Shaoxuan,et al.Effect produced by perforation on counter-extrusion intensity of casing[J].Journal of Liaoning Technical University(Natural Science),2008,27(4):523-525.
  • Related Articles

    [1]GUO Jianchun, ZHAO Feng, ZHAN Li, ZHANG Hang, ZENG Jie. Recent Advances and Development Suggestions of Temporary Plugging and Diverting Fracturing Technology for Shale Gas Reservoirs in the Sichuan Basin[J]. Petroleum Drilling Techniques, 2023, 51(4): 170-183. DOI: 10.11911/syztjs.2023039
    [2]XIA Haibang. The Research and Field Testing of Dual Temporary Plugging Fracturing Technology for Shale Gas Wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90-96. DOI: 10.11911/syztjs.2020065
    [3]CHEN Zuo, LI Shuangming, CHEN Zan, WANG Haitao. Hydraulic Fracture Initiation and Extending Tests in Deep Shale Gas Formations and Fracturing Design Optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70-76. DOI: 10.11911/syztjs.2020060
    [4]ZHAO Guangyu. Study of a Simulation of Degree of Fracturing Production and Resulting Gas Flow in Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96-103. DOI: 10.11911/syztjs.2018058
    [5]LAN Chengyu, DING Yuqi, LIU Jubao, DAI Ziwei, ZHOU Huiyu, LIU Yuxi. Force Analysis and Test of Bridge Plug Drilling[J]. Petroleum Drilling Techniques, 2018, 46(1): 68-74. DOI: 10.11911/syztjs.2018032
    [6]GUANG Xinjun, WANG Minsheng. Key Production Test Technologies for Offshore Natural Gas Hydrate[J]. Petroleum Drilling Techniques, 2016, 44(5): 45-51. DOI: 10.11911/syztjs.201605008
    [7]FU Xuan, LI Gensheng, HUANG Zhongwei, CHI Huanpeng, LU Peiqing. Laboratory Testing and Productivity Numerical Simulation for Fracturing CBM Radial Horizontal Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 99-105. DOI: 10.11911/syztjs.201602017
    [8]Jia Changgui. Evaluation on Conductivity Performance of Proppant in Shale Gas Network Fracturing[J]. Petroleum Drilling Techniques, 2014, 42(5): 42-46. DOI: 10.11911/syztjs.201405007
    [9]Jiang Tingxue, Bian Xiaobing, Yuan Kai, Zhou Linbo. A New Method in Staged Fracturing Design Optimization for Shale Gas Horizontal Wells[J]. Petroleum Drilling Techniques, 2014, 42(2): 1-6. DOI: 10.3969/j.issn.1001-0890.2014.02.001
    [10]Liu Yinshan, Li Zhiping, Lai Fengpeng, Ma Hongze, Ren Guanglei. Productivity Prediction Model of Horizontal Gas Wells with Noncoplanar Fractures[J]. Petroleum Drilling Techniques, 2012, 40(4): 96-101. DOI: 10.3969/j.issn.1001-0890.2012.04.019
  • Cited by

    Periodical cited type(5)

    1. 徐勤亮,陈景皓,高强,汪利伟,李忠利. 低温环境下海洋输油橡胶软管的扭转性能. 科学技术与工程. 2024(25): 10755-10761 .
    2. 王宇哲,张凯,杨甘生,李亚洲. 南极钻机的耐温材料和保温方式的优选. 钻探工程. 2023(S1): 82-89 .
    3. 孟广伟,骆青,钟声,孟广福. 石油化工管道接头橡胶防腐密封材料研究. 化学与粘合. 2022(04): 336-340 .
    4. 王宴滨,张辉,高德利,柯珂,刘文红. 低温环境下钻柱材料力学特性试验及强度设计. 石油钻探技术. 2021(03): 35-41 . 本站查看
    5. 顾铖璋. 深冷环境下密封橡胶的力学性能研究. 橡胶科技. 2021(08): 375-381 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (7930) PDF downloads (42) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return