YANG Jin, LU Baoping. The Challenges and Key Technologies of Drilling in the Cold Water Area of the Arctic[J]. Petroleum Drilling Techniques, 2017, 45(5): 1-7. DOI: 10.11911/syztjs.201705001
Citation: YANG Jin, LU Baoping. The Challenges and Key Technologies of Drilling in the Cold Water Area of the Arctic[J]. Petroleum Drilling Techniques, 2017, 45(5): 1-7. DOI: 10.11911/syztjs.201705001

The Challenges and Key Technologies of Drilling in the Cold Water Area of the Arctic

More Information
  • Received Date: August 27, 2017
  • The cold water area of the Arctic is rich in oil and gas resources,which has been the focus of international oil petroleum companies presently.Understanding the challenges and key technologies of drilling in this area is of great importance for promoting the technological breakthroughs and making high efficient development of oil and gas resources.Through a large number of literature research and field investigation,Arctic cold water drilling equipment and key technologies as well as main research progress have been analyzed in domestic waters and abroad,and have arrived at the following conclusions:the primary challenges for oil and gas exploration and development in cold water area of the Arctic include harsh operating environment,long distance logistic support,stringent environmental requirements.The key equipment for drilling in the area includes bottom-supported platform,artificial island,ice resistant jack-up platforms and floating drilling rigs.Meanwhile,low-temperature drilling rigs,fully enclosed ice resistant platforms and new low temperature resistant materials are the key drilling equipment and materials urgently require a technical breakthrough urgently in the near future.The investigation results indicate that the main research directions for cold water area of the Arctic drilling should include permafrost drilling technology,low temperature drilling fluid and cementing technology,the extended reach drilling with displacement more than ten thousands of meters,the assessment and control of the disaster or risk,drilling waste emission,environmental protection,etc,which are the key technologies for the high efficiency development of oil and gas resources in cold water area of the Arctic.
  • [1]
    HAMILTON J M.The challenges of deep-water Arctic development[J].International Journal of Offshore and Polar Engineering,2011,21(4):241-247.
    [2]
    余本善,孙乃达.全球待发现油气资源分布及启示[J].中国矿业,2015,24(增刊1):22-27. YU Benshan,SUN Naida.The distribution of global undiscovered hydrocarbon resources and enlightenment[J].China Mining Magazine,2015,24(supplement 1):22-27.
    [3]
    李浩武,童晓光.北极地区油气资源及勘探潜力分析[J].中国石油勘探,2010,15(3):73-82. LI Haowu,TONG Xiaoguang.Exploration potential analysis of oil and gas resource s in Arctic Regions[J].China Petroleum Exploration,2010,15(3):73-82.
    [4]
    朱凯.北极海上钻井模式及发展趋势[J].内江科技,2016,37(2):71-73,75. ZHU Kai.Arctic offshore drilling model and development trend[J].Neijiang Science Technology,2016,37(2):71-73,75.
    [5]
    党学博,李怀印.北极海洋工程模式及关键技术装备进展[J].石油工程建设,2016,42(4):1-6. DANG Xuebo,LI Huaiyin.Offshore engineering modes and key technologies in Arctic[J].Petroleum Engineering Construction,2016,42(4):1-6.
    [6]
    路保平,李国华.俄罗斯萨哈林海洋钻井总承包工程[M].东营:中国石油大学出版社,2009. LU Baoping,LI Guohua.EPC drilling project in Sakhalin offshore of Russia[M].Dongying:China University of Petroleum Press,2009.
    [7]
    孙宝江.北极深水钻井关键装备及发展展望[J].石油钻探技术,2013,41(3):7-12. SUN Baojiang.Progress and prospect of key equipments for Arctic deepwater drilling[J].Petroleum Drilling Techniques,2013,41(3):7-12.
    [8]
    郭晓琼.中俄经贸合作新进展及未来发展趋势[J].俄罗斯学刊,2016,6(3):10-18. GUO Xiaoqiong.New progress in economic and trade cooperation between China and Russia and the future development trend[J].Academic Journal of Russian Studies,2016,6(3):10-18.
    [9]
    卢景美,邵滋军,房殿勇,等.北极圈油气资源潜力分析[J].资源与产业,2010,12(4):29-33. LU Jingmei,SHAO Zijun,FANG Dianyong.et al.Analysis of oil-gas resources potential in the Arctic Circle[J].Resources Industries,2010,12(4):29-33.
    [10]
    李鸿涛,陶平安,王志忠,等.ZJ40/2250DBG低温轨道钻井装备的研制[J].石油机械,2014,42(11):64-68. LI Hongtao,TAO Ping’an,WANG Zhizhong,et al.Development of ZJ40/2250DBG low-temperature track drilling rig[J].China Petroleum Machinery,2014,42(11):64-68.
    [11]
    SUBBOTIN E.Oil offloading solutions for the Pechora Sea exemplified by the Prirazlomnoye Field[D].Stavanger:University of Stavanger,2015.
    [12]
    张鲁新.多年冻土,世界范围内的难题[J].中国计算机用户,2005(43):21. ZHANG Luxin.Permafrost,the world’s problems[J].China Computer Users,2005(43):21.
    [13]
    YAKUSHEV V S.Permafrost impact on gas fields development in the Russian onshore Arctic (Yamal Peninsula)[R].OTC-25504-MS,2015.
    [14]
    WHITEMAN G,HOPE C,WADHAMS P.Vast costs of Arctic change[J].Nature,2013,499(7459):401-403.
    [15]
    赵玮.北极资源的开发和环境保护[J].试题与研究,2013(21):43. ZHAO Wei.Development and environmental protection of Arctic resources[J].Shiti yu Yanjiu,2013(21):43.
    [16]
    刘学,王雪梅,凌晓良,等.北极油气勘探开发技术最新进展研究[J].海洋开发与管理,2014,31(1):37-41. LIU Xue,WANG Xuemei,LING Xiaoliang,et al.Research on the latest development of Arctic oil and gas exploration and development technology[J].Ocean Development and Management,2014,31(1):37-41.
    [17]
    张琦.俄罗斯北极地区油气田开发模式[J].油气田地面工程,2013,32(7):18-19. ZHANG Qi.Development model of oil and gas field in Russian Arctic Region[J].Oil-Gas Field Surface Engineering,2013,32(7):18-19.
    [18]
    董智惠.深水钻井船总体方案论证[D].哈尔滨:哈尔滨工程大学,2010. DONG Zhihui.Research on the preliminary concept design of deepwater drillship[D].Harbin:Harbin Engineering University,2010.
    [19]
    WASSINK A,van der LIST R.Development of solutions for Arctic offshore drilling[R].SPE 166848,2013.
    [20]
    张凌,蒋国盛,蔡记华,等.低温地层钻进特点及其钻井液技术现状综述[J].钻井液与完井液,2006,23(4):69-72. ZHANG Ling,JIANG Guosheng,CAI Jihua,et al.Overview of low temperature formation characteristics while drilling and available drilling fluid technology[J].Drilling Fluid Completion Fluid,2006,23(4):69-72.
    [21]
    李宽,张永勤,王汉宝,等.冻土区天然气水合物钻井泥浆冷却系统设计及关键参数计算[J].探矿工程(岩土钻掘工程),2014,41(7):45-48. LI Kuan,ZHANG Yongqin,WANG Hanbao,et al.Design of cooling system for gas hydrate drilling mud in frozen soil region and the calculation of important factors[J].Exploration Engineering(Rock Soil Drilling and Tunneling),2014,41(7):45-48.
    [22]
    路保平.深水钻井关键技术与装备[M].北京:中国石化出版社,2014. LU Baoping.Key technologies and equipments for deepwater drilling[M].Beijing:China Petrochemical Press,2014.[J]
    [23]
    贾瑞,孙友宏,郭威,等.东北冻土区天然气水合物科学钻探试验及钻进效率影响因素分析[J].探矿工程(岩土钻掘工程),2013,40(4):6-9. JIA Rui,SUN Youhong,GUO Wei,et al.Northeast permafrost gas hydrate scientific drilling test and the analysis of factors influencing drilling efficiency[J].Exploration Engineering(Rock Soil Drilling and Tunneling),2013,40(4):6-9.
    [24]
    刘华南.冻土层钻探低温泡沫冲洗液的研究[D].长春:吉林大学,2016. LIU Huanan.Research on low temperature foam flushing fluid used in frozen soil layer drilling[D].Changchun:Jilin University,2016.
    [25]
    王建东,屈建省,高永会.国外深水固井水泥浆技术综述[J].钻井液与完井液,2005,22(6):54-56. WANG Jiandong,QU Jiansheng,GAO Yonghui.The review of deep sea cementing slurry technology abroad[J].Drilling Fluid Completion Fluid,2005,22(6):54-56.
    [26]
    TORSaeTER M,CERASI P.Mud-weight control during Arctic drilling operations[R].OTC 25481,2015.
    [27]
    ANDREY B,GURBAN V,STANISLAV K,et al.Drilling with casing system continues successful drilling of permafrost sections in Arctic Circle of Western Siberia (Russian Federation)[R].OTC 24617,2014.
    [28]
    高德利,朱旺喜,李军,等.深水油气工程科学问题与技术瓶颈:第147期双清论坛学术综述[J].中国基础科学,2016,18(3):1-6. GAO Deli,ZHU Wangxi,LI Jun,et al.Scientific problems and technical bottlenecks in deepwater oil gas engineering:Academic Review of the 147th Shuangqing Forum[J].China Basic Science,2016,18(3):1-6.
    [29]
    孙宝江,张振楠.南海深水钻井完井主要挑战与对策[J].石油钻探技术,2015,43(4):1-7. SUN Baojiang,ZHANG Zhennan.Challenges and countermeasures for the drilling and completion of deepwater wells in the South China Sea[J].Petroleum Drilling Techniques,2015,43(4):1-7.
    [30]
    徐鹏,孙宝江,董玉杰,等.用于处理深水浅层气的动力压井方法研究[J].石油钻探技术,2010,38(1):11-15. XU Peng,SUN Baojiang,DONG Yujie,et al.Dynamic well kill method for shallow gas pockets in deep water[J].Petroleum Drilling Techniques,2010,38(1):11-15.
    [31]
    叶志,樊洪海,张国斌,等.深水钻井地质灾害浅层水流问题研究[J].石油钻探技术,2010,38(6):48-52. YE Zhi,FAN Honghai,ZHANG Guobin,et al.Investigation of shallow water flow in deepwater drilling[J].Petroleum Drilling Techniques,2010,38(6):48-52.
    [32]
    周波,杨进,张百灵,等.海洋深水浅层地质灾害预测与控制技术[J].海洋地质前沿,2012,28(1):51-54. ZHOU Bo,YANG Jin,ZHANG Bailing,et al.Prediction and control technology of shallow geological hazards in deepwater area[J].Marine Geology Frontiers,2012,28(1):51-54.
    [33]
    路保平,李国华.西非深水钻井完井关键技术[J].石油钻探技术,2013,41(3):1-6. LU Baoping,LI Guohua.Key technologies for deepwater drilling completion in west Africa[J].Petroleum Drilling Techniques,2013,41(3):1-6.
    [34]
    高本金,陈国明,殷志明,等.深水无隔水管钻井液回收钻井技术[J].石油钻采工艺,2009,31(2):44-47. GAO Benjin,CHEN Guoming,YIN Zhiming,et al.Deepwater riserless mud recovery drilling technology[J].Oil Drilling Production Technology,2009,31(2):44-47.
  • Cited by

    Periodical cited type(12)

    1. 马金龙,李继丰,刘惠惠. 俄罗斯北极陆上钻井技术挑战与关键技术. 采油工程. 2023(01): 54-59+85-86 .
    2. 范西哲,李晓,吴永川,张居贵,楼一珊,刘善勇,朱亮. 北极永冻区钻井地层压力预测方法. 天然气工业. 2022(03): 99-105 .
    3. 王磊,胡志强,柯珂,张辉,李莅临,闫莉. 极地冷海浅层天然气水合物地层声学特性模拟实验研究. 中国海上油气. 2022(04): 218-224 .
    4. 刘浩亚,鲍洪志,刘亚青,何青水,胡志强,金鑫. 改性高铝水泥浆的负温硬化性能及其增强机制. 石油钻探技术. 2021(02): 54-60 . 本站查看
    5. 周晓晖,苏义脑,牛成成,程远方,魏佳. 保护冻土层的真空隔热套管性能试验与数值模拟研究. 石油钻探技术. 2021(03): 21-26 . 本站查看
    6. 鲍洪志,孙元伟,邹德一,牛成成. 含寄生管和中心管的套管隔热效果影响因素研究. 石油钻探技术. 2021(03): 42-47 . 本站查看
    7. 路保平,侯绪田,柯珂. 中国石化极地冷海钻井技术研究进展与发展建议. 石油钻探技术. 2021(03): 1-10 . 本站查看
    8. 陈远鹏,王志远,孙宝江,陈野,郑凯波. 极地钻井关键设备橡胶密封材料的优选. 石油钻探技术. 2020(01): 54-60 . 本站查看
    9. 王建伟,袁继胜,李晓维,孟普伟,蒋毅. 北极地区低温防气窜固井技术研究与应用. 中外能源. 2020(09): 56-59 .
    10. 曾祥禹. 国内外钻井液技术进展及对钻井液的有关认识. 西部探矿工程. 2020(10): 75-76 .
    11. 朱亮,范西哲,李军伟,邹和均,楼一珊,李忠慧. 寒带海域永冻层的力学特性对油气钻井的挑战. 天然气工业. 2020(11): 110-119 .
    12. 刘浩亚,赵卫,李燕,豆宁辉,周朝. 负温早强水泥浆体系的室内实验. 石油钻采工艺. 2019(03): 294-300 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (8779) PDF downloads (11174) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return