ZHU Zuyang, WU Haiyan, LI Yongjie, LI Fengbo. The Effect of Collar Structure on Acoustic Logging Response While Drilling[J]. Petroleum Drilling Techniques, 2016, 44(6): 117-122. DOI: 10.11911/syztjs.201606020
Citation: ZHU Zuyang, WU Haiyan, LI Yongjie, LI Fengbo. The Effect of Collar Structure on Acoustic Logging Response While Drilling[J]. Petroleum Drilling Techniques, 2016, 44(6): 117-122. DOI: 10.11911/syztjs.201606020

The Effect of Collar Structure on Acoustic Logging Response While Drilling

More Information
  • Received Date: March 30, 2016
  • Revised Date: August 09, 2016
  • To acquire formation acoustic data effectively during acoustic logging while drilling, the finite difference method and slowness-time coherence method were used jointly to determine impacts of ID, OD, ID variation and external grooves on acoustic wave propagation. Simulation calculation results showed that no formation S-wave could be detected when the OD of the drill collar increased, or when the clearance between external wall of the drill collar and the borewall decreased. When ID of the drill collar decreased, no significant changes could be observed in amplitudes of the collar wave, S-wave and the Stoneley wave, but the amplitudes of the Stoneley wave increased dramatically with the thinning of wall thicknesses of the drill collar. The impact of ID changes of the drill collar on amplitudes may predominantly be determined by whether or not the acoustic source frequency is in collar stopband range. When a groove appeared on the outer wall of drill collars, the wave amplitude from the drill collar became smaller, thus the P-waves could be extracted from the acquired wave shapes. Research results showed that changes in IDs and OD of drill collars could affect the acceptance of S-wave and Stoneley wave. On the other hand, the shape of the internal and external walls of the drill collar (such as notch groove) may affect the wave amplitude of drill collar. The relationship between the structure of the drill collar and the responses of the LWD may provide a reliable foundation for the design of silencers in the LWD tools and for the interpretation of LWD data.
  • [1]
    唐晓明,郑传汉.定量测井声学[M].北京:石油工业出版社,2004:52-68. TANG Xiaoming,ZHENG Chuanhan.Quantitative borehole acoustic methods[M].Beijing:Petroleum Industry Press,2004:52-68.
    [2]
    王秀明,张海澜,何晓,等.声波测井中的物理问题[J].物理,2011,40(2):79-87. WANG Xiuming,ZHANG Hailan,HE Xiao,et al.Physical problems in acoustic logging[J].Physics,2011,40(2):79-87.
    [3]
    DEGRANGE J-M,HAWTHORN A,NAKAJIMA H,et al.Sonic while drilling:multipole acoustic tools for multiple answers[R].SPE 128162,2010.
    [4]
    TANG X M,WANG T,PATTERSON D.Multipole acoustic logging-while-drilling[R].SEG-2002-0364,2002.
    [5]
    LEGGETT J V III,DUBINSKY V,PATTERSON D,et al.Field test results demonstrating improved real-time data quality in an advanced LWD acoustic system[R].SPE 71732,2001.
    [6]
    MANNING M J,ANDONOF L J,QUINN T,et al.LWD acoustic log processing:petrophysics modeling improves interpretation of acoustic slowness[R].SPWLA-2009-22276,2009.
    [7]
    WANG T,TANG Xiaoming.Finite-difference modeling of elastic wave propagation:a nonsplitting perfectly matched layer approach[J].Geophysics,2003,68(5):1749-1755.
    [8]
    王华,陶果,王兵,等.多级子随钻声波测井波场模拟与采集模式分析[J].地球物理学报,2009,52(9):2402-2409. WANG Hua,TAO Guo,WANG Bing,et al.Wave field simulation and data acquisition scheme analysis for LWD acoustic tool[J].Chinese Journal of Geophysics,2009,52(9):2402-2409.
    [9]
    杨勇,车小花,李俊,等.基于时域有限差分法的随钻声波测井仪隔声体隔声效果的数值模拟[J].中国石油大学学报(自然科学版),2009,33(3):66-70. YANG Yong,CHE Xiaohua,LI Jun,et al.Sound isolation numerical simulation on isolator of logging while drilling sonic tool using finite difference time-domain in method[J].Journal of China University of Petroleum(Edition of Natural Science),2009,33(3):66-70.
    [10]
    闫向宏,苏远大,孙建孟,等.周期性轴对称凹槽结构隔声特性数值模拟[J].计算物理,2010,27(6):869-876. YAN Xianghong,SU Yuanda,SUN Jianmeng,et al.Acoustic characteristics of axisymmetric periodic groove structures[J].Chinese Journal of Computational Physics,2010,27(6):869-876.
    [11]
    苏远大,庄春喜,唐晓明.随钻声波测井钻铤模式波衰减规律研究与隔声体设计[J].地球物理学报,2011,54(9):2419-2428. SU Yuanda,ZHUANG Chunxi,TANG Xiaoming.LWD acoustic collar mode wave attenuation character research and isolator design[J].Chinese Journal of Geophysics,2011,54(9):2419-2428.
    [12]
    杨玉峰.随钻声波测井时域有限差分模拟与钻铤波传播特性研究[D].哈尔滨:哈尔滨工业大学,2014. YANG Yufeng.Studies on the finite-difference time-domain simulation of acoustic logging while drilling and the propagation characteristics of the collar wave[D].Harbin:Harbin Institute of Technology,2014.
    [13]
    朱留方,沈建国.从阵列声波测井波形处理地层纵、横波时差的新方法[J].地球物理学进展,2006,21(2):483-488. ZHU Liufang,SHEN Jianguo.The new method of processing the slowness of P and S wave from waveforms of array sonic logging[J].Progress in Geophysics,2006,21(2):483-488.
    [14]
    王军,韩庆邦.金属板中Lamb波波速与应力关系的实验研究[J].应用声学,2015,34(4):358-363. WANG Jun,HAN Qingbang.Experiment on relationship between Lamb wave velocity and static stress in metal plate[J].Journal of Applied Acoustics,2015,34(4):358-363.
    [15]
    中国石油大学(华东).一种在钻铤上变径隔声的随钻声波测井方法及装置:201110299591.3[P].2011-09-29. China University of Petroleum(Huadong).A device and method for LWD sonic logging of the drill collar adjustable:201110299591.3[P].2011-09-29.
  • Related Articles

    [1]GAO Hangxian, LI Zhenxiang, HU Yanfeng. Key Drilling Technologies for Increasing ROP in Ultra-Deep Well Yuanshen 1[J]. Petroleum Drilling Techniques, 2024, 52(3): 28-33. DOI: 10.11911/syztjs.2024054
    [2]ZOU Shuqiang, WANG Jianyun, ZHANG Hongwei, Eerqm. ϕ444.5 mm Long Openhole Cementing Technology for Well SBY-1[J]. Petroleum Drilling Techniques, 2020, 48(1): 40-45. DOI: 10.11911/syztjs.2020008
    [3]LIN Yongxue, WANG Weiji, JIN Junbin. Key Drilling Fluid Technology in the Ultra Deep Section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113-120. DOI: 10.11911/syztjs.2019068
    [4]LIU Zhengli, YAN De. Key Drilling Techniques of Liwan22-1-1 Ultra-Deepwater Well in East of South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(1): 13-19. DOI: 10.11911/syztjs.2019026
    [5]WU Jiang, ZHU Xinhua, LI Yanjun, YANG Zhonghan. HTHP Liner Cementing Techniques in the Dongfang 13-1 Gas Field in the Yinggehai Basin[J]. Petroleum Drilling Techniques, 2016, 44(4): 17-21. DOI: 10.11911/syztjs.201604004
    [6]Li Hongxing. Anti-Collision and Obstacle Bypassing Techniques in Cluster Wells Drilling in Shallow Layers of the PY30-1 Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(6): 125-129. DOI: 10.11911/syztjs.201506023
    [7]Chen Luyuan. Technology and Practice for Horizontal Well Development in the He-1 Gas Reservoir of Daniudi Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(1): 44-51. DOI: 10.11911/syztjs.201501008
    [8]Sun Kunzhong, He Jibiao, Zeng Penghui, Shen Binliang, Gu Jun. Application of Mud Cake Curing Agent in Well Yuanye HF-1[J]. Petroleum Drilling Techniques, 2013, 41(5): 41-45. DOI: 10.3969/j.issn.1001-0890.2013.05.008
    [9]Wang Jinlei, Hei Guoxing, Zhao Hongxue. Drilling Completion Techniques Used in Shale Gas Horizontal Well YSH1-1 in Zhaotong Block[J]. Petroleum Drilling Techniques, 2012, 40(4): 23-27. DOI: 10.3969/j.issn.1001-0890.2012.04.005
    [10]Wu Xudong, Fang Manzong, Shao Shijun, Guan Shen, Niu Xue. Application of Formation Pressure Test Tool While Drilling in Well A9 of Yacheng 13-1 Gas Field[J]. Petroleum Drilling Techniques, 2012, 40(2): 124-126. DOI: 10.3969/j.issn.1001-0890.2012.02.024
  • Cited by

    Periodical cited type(4)

    1. 刘明明,宋智勇,马收,魏玉华,庄欢乐. 基于新型粒子群算法的泵送射孔井口压力预测方法研究. 测井技术. 2024(03): 395-401 .
    2. 唐波,吴雪锋,赵洪山,李泽,肖东. 高温高压下钻井液循环流动摩阻实验研究. 科学技术与工程. 2023(28): 12031-12037 .
    3. 肖雯. 径向井压裂技术携砂液摩阻影响参数研究. 复杂油气藏. 2019(04): 71-75 .
    4. 杨浩珑,向祖平,李龙,袁迎中. CO_2泡沫双子表面活性剂清洁压裂液研究与试验. 石油钻探技术. 2018(02): 92-97 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (6494) PDF downloads (10549) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return