ZANG Yanbin, ZHANG Jincheng, ZHAO Mingkun, SONG Zheng, LUO Rui. Economic Performance Assessments of Multi-Well Pad Drilling Technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(6): 30-35. DOI: 10.11911/syztjs.201606005
Citation: ZANG Yanbin, ZHANG Jincheng, ZHAO Mingkun, SONG Zheng, LUO Rui. Economic Performance Assessments of Multi-Well Pad Drilling Technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(6): 30-35. DOI: 10.11911/syztjs.201606005

Economic Performance Assessments of Multi-Well Pad Drilling Technology in the Fuling Shale Gas Field

More Information
  • Received Date: February 14, 2016
  • Revised Date: August 25, 2016
  • The number of wells deployed on a specific work mode of one multi-well pad may directly determine economic performance of multi-well pad drilling technology. Currently, there is no model available for assessment of the economic performance of the technology. In this paper, the impact of the "multi-well pad drilling" operations on engineering costs related to pre-drill, drilling, fracturing and other operations were analyzed. In addition, models to assess economic performances of the drilling technology were established with the reduction in overall cost of project as the objective function. Calculations and analyses were also performed by using field data of the shale gas field in the Fuling Area. Research results showed the calculation results coincided well with field data. It was determined that the optimal quantity of wells deployed on each "multi-well pad drilling" platform in Fuling Area was 4-8 wells. For platforms deployed for development of shale gas in deep formations with over 10 wells, the stream-lined "multi-well pad drilling" platform with two rigs of "Model 30+Model 70" should be considered as the optimal work mode. Research results showed the newly proposed techniques for assessing and analyzing economic performances of the "multi-well pad drilling", together with resulting optimal number of wells deployed on such platform and corresponding work modes might provide the necessary guidelines for the overall deployment and design of multi-well pad drilling technology.
  • [1]
    张金成,孙连忠,王甲昌,等."井工厂"技术在我国非常规油气开发中的应用[J].石油钻探技术,2014,42(1):20-25. ZHANG Jincheng,SUN Lianzhong,WANG Jiachang,et al.Application of multi-well pad in unconventional oil and gas development in China[J].Petroleum Drilling Techniques,2014,42(1):20-25.
    [2]
    张金成,艾军,臧艳彬,等.涪陵页岩气田"井工厂"技术[J].石油钻探技术,2016,44(3):9-15. ZHANG Jincheng,AI Jun,ZANG Yanbin,et al.Multi-well pad technology in the Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2016,44(3):9-15.
    [3]
    周贤海,臧艳彬.涪陵地区页岩气山地"井工厂"钻井技术[J].石油钻探技术,2015,43(3):45-49. ZHOU Xianhai,ZANG Yanbin.Application of"well factory"drilling technology in the Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2015,43(3):45-49.
    [4]
    艾军,张金成,臧艳彬,等.涪陵页岩气田钻井关键技术[J].石油钻探技术,2014,42(5):9-15. AI Jun,ZHANG Jincheng,ZANG Yanbin,et al.The key drilling technologies in Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2014,42(5):9-15.
    [5]
    刘乃震.苏53区块"井工厂"技术[J].石油钻探技术,2014,42(5):21-25. LIU Naizhen.Application of factory drilling technology in Block Su 53[J].Petroleum Drilling Techniques,2014,42(5):21-25.
    [6]
    陈平,刘阳,马天寿.页岩气"井工厂"钻井技术现状及展望[J].石油钻探技术,2014,42(3):1-7. CHEN Ping,LIU Yang,MA Tianshou.Status and prospect of multi-well pad drilling technology in shale gas[J].Petroleum Drilling Techniques,2014,42(3):1-7.
    [7]
    OGOKE V,SCHAUERTE L,BOUCHARE G,et al.Simultaneous operations in multi-well pad:a cost effective way of drilling multi wells pad and deliver 8 fracs a day[R].SPE 170744,2014.
    [8]
    KARSAKOV V A.Decision for optimum number of well pads during phase of field development design[R].SPE 171299,2014.
    [9]
    司光,林好宾,丁丹红,等.页岩气水平井工厂化作业造价确定与控制对策[J].天然气工业,2013,33(12):163-167. SI Guang,LIN Haobin,DING Danhong,et al.Cost determination and control of factory-like operations of shale gas horizontal wells[J].Natural Gas Industry,2013,33(12):163-167.
    [10]
    王显光,李雄,林永学.页岩水平井用高性能油基钻井液研究与应用[J].石油钻探技术,2013,41(2):17-22. WANG Xianguang,LI Xiong,LIN Yongxue.Research and application of high performance oil base drilling fluid for shale horizontal wells[J].Petroleum Drilling Techniques,2013,41(2):17-22.
    [11]
    周贤海.涪陵焦石坝区块页岩气水平井钻井完井技术[J].石油钻探技术,2013,41(5):26-30. ZHOU Xianhai.Drilling completion techniques used in shale gas horizontal wells in Jiaoshiba Block of Fuling Area[J].Petroleum Drilling Techniques,2013,41(5):26-30.
    [12]
    周德华,焦方正,贾长贵,等.JY1HF页岩气水平井大型分段压裂技术[J].石油钻探技术,2014,42(1):75-80. ZHOU Dehua,JIAO Fangzheng,JIA Changgui,et al.Large-scale multi-stage hydraulic fracturing technology for shale gas horizontal Well JY1HF[J].Petroleum Drilling Techniques,2014,42(1):75-80.
  • Related Articles

    [1]QU Hao, CHEN Feng, CHEN Jialei, ZHANG Hao, MING Chuanzhong, LI Jirong. Three-Dimensional Mechanical Characteristics of Drill Collar Joints under Downhole Equivalent Impact Torque in Extra-Deep Well[J]. Petroleum Drilling Techniques, 2024, 52(2): 211-217. DOI: 10.11911/syztjs.2024044
    [2]SUN Xiaofang, LIU Feng, ZHANG Conghui, SUN Zhifeng, QIU Ao, GUO Shangjing. Emission Frequency Optimization of Borehole Imaging for Dipole Acoustic Remote Detection of Slow Formations[J]. Petroleum Drilling Techniques, 2023, 51(1): 98-105. DOI: 10.11911/syztjs.2023017
    [3]LU Zongyu, ZHENG Junsheng, JIANG Zhenxin, ZHAO Fei. An Experimental Study on Rock Breaking Efficiency with Ultrasonic High-Frequency Rotary-Percussive Drilling Technology[J]. Petroleum Drilling Techniques, 2021, 49(2): 20-25. DOI: 10.11911/syztjs.2020126
    [4]WANG Zhengxu, GAO Deli. Temperature Distribution of Heavy Oil Reservoirs under High Frequency Electromagnetic Heating and an Analysis of Its Influencing Factors[J]. Petroleum Drilling Techniques, 2020, 48(1): 90-97. DOI: 10.11911/syztjs.2019128
    [5]HU Yongjian, WANG Lan. Modeling High-Frequency Magnetic Coupling Wired Drill Pipe Channel Based on Linear Simulation[J]. Petroleum Drilling Techniques, 2019, 47(2): 120-126. DOI: 10.11911/syztjs.2019050
    [6]Zhang Huizeng, Guan Zhichuan, Ke Ke, Dou Yuling. The Impact of Lateral Vibration on Friction of Drill String in Horizontal Wells[J]. Petroleum Drilling Techniques, 2015, 43(3): 61-64. DOI: 10.11911/syztjs.201503012
    [7]Ni Weining, Liu Jianhua, Zhang Wei, Wu Chunping, Wu Fei. The Control Technology of Downhole Tools Based on Radio Frequency Identification[J]. Petroleum Drilling Techniques, 2014, 42(6): 102-105. DOI: 10.11911/syztjs.201406020
    [8]Li Siqi, Yan Tie, Wang Xijun, Qiao Yong, Yang Min. The Micro-Vibration Equation of Rock and Its Analysis Basing on the Principle of Least Action[J]. Petroleum Drilling Techniques, 2014, 42(3): 66-70. DOI: 10.3969/j.issn.1001-0890.2014.03.013
    [9]Li Wei, Yan Tie, Zhang Zhichao, Li Lianqun. Rock Response Mechanism and Rock Breaking Test Analysis for Impact of High Frequency Vibration Drilling Tool[J]. Petroleum Drilling Techniques, 2013, 41(6): 25-28. DOI: 10.3969/j.issn.1001-0890.2013.06.005
  • Cited by

    Periodical cited type(5)

    1. 狄勤丰,尤明铭,李田心,周星,杨赫源,王文昌. 特深井钻柱动力学特性模拟与分析. 石油钻探技术. 2024(02): 108-117 . 本站查看
    2. 赵一超,宋朝阳,刘志强,王强,荆国业,孙建荣,王媛. 基于力-构-能模型的钻井法凿井钻进参数设计思路与方法. 建井技术. 2024(03): 1-9+43 .
    3. 祝兆鹏,朱林,宋先知,李永钊,张仕民,柯迪丽娅·帕力哈提,张诚恺,王超尘. 机理约束下钻井机械钻速智能预测泛化方法. 天然气工业. 2024(09): 179-189 .
    4. 王果,许博越. 理论模型与机器学习融合的PDC钻头钻速预测方法. 石油钻探技术. 2024(05): 117-123 . 本站查看
    5. 余昕泽. 赵集盐矿钻井提速提质技术. 复杂油气藏. 2024(04): 480-485 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (9340) PDF downloads (14960) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return