Zhao Xin, Qiu Zhengsong, Gao Yonghui, Zhang Yongjun, Ma Yongle, Liu Xiaodong. Design Optimization for Water-Based Drilling Fluids in a Deepwater Gas Field on the Western Coast of Myanmar[J]. Petroleum Drilling Techniques, 2015, 43(4): 13-18. DOI: 10.11911/syztjs.201504003
Citation: Zhao Xin, Qiu Zhengsong, Gao Yonghui, Zhang Yongjun, Ma Yongle, Liu Xiaodong. Design Optimization for Water-Based Drilling Fluids in a Deepwater Gas Field on the Western Coast of Myanmar[J]. Petroleum Drilling Techniques, 2015, 43(4): 13-18. DOI: 10.11911/syztjs.201504003

Design Optimization for Water-Based Drilling Fluids in a Deepwater Gas Field on the Western Coast of Myanmar

More Information
  • Received Date: April 20, 2015
  • Revised Date: July 11, 2015
  • In order to cope with the problems encountered in deepwater gas reservoir drilling on the west coast of Myanmar, such as borehole instability in water-sensitive shale formation, mud thickening at low temperature and high pressure on the seafloor, and the generation of natural gas hydrate, strong inhibitory water-based drilling fluid HIDril was optimized and designed on the basis of optimizing drilling fluid rheology at low temperature and selecting key agents including a gas hydrate inhibitor, taking polyamine inhibitors SDJA as the key agent. Indoor performance evaluation results showed that the drilling fluid of lower viscosity, higher dynamic shear and 6 value was better for hole cleaning, and at the temperature 4℃, it had good rheology. The mud displayed satisfactory performances in inhibition of hydration of water sensitive mud shale and achieved the highest recovery rate of water-sensitive shale up to 96.33%. In the simulated seabed environment with low temperatures and high pressures, HIDril could effectively inhibit the formation of gas hydrate. Drilling fluid permeability recovery rate was above 85.57%, which had a good reservoir protection effect. On this basis, drilling fluid technology program was designed according to the characteristics of different well sections in the deepwater gas field at the west coast of Myanmar and the design results could provide reference cases for drilling activities in this deep water gas field.
  • [1]
    Zamora M,Broussard P N,Stephens M P.The top 10 mud-related concerns in deepwater drilling operations[R].SPE 59019,2000.
    [2]
    Leaper R,Hansen N,Otto M.Meeting deepwater challenges with high performance water based mud[R].AADE-06-DF-HO-31,2006.
    [3]
    路保平,李国华.西非深水钻井完井关键技术[J].石油钻探技术,2013,41(3):1-6. Lu Baoping,Li Guohua.Key technologies for deepwater drilling completion in West Africa[J].Petroleum Drilling Techniques,2013,41(3):1-6.
    [4]
    胡进军,孙强,夏小春,等.环境友好型水基钻井液 GREEN-DRILL的研制与应用[J].石油钻探技术,2014,42(2):75-79. Hu Jinjun,Sun Qiang,Xia Xiaochun,et al.Development and application of environment-friendly drilling fluid GREEN-DRILL[J].Petroleum Drilling Techniques,2014,42(2):75-79.
    [5]
    邱正松,赵欣.深水钻井液技术现状与发展趋势[J].特种油气藏,2013,20(3):1-7. Qiu Zhengsong,Zhao Xin.Current status and developing trend of deepwater drilling fluid technology[J].Special Oil Gas Reservoirs,2013,20(3):1-7.
    [6]
    罗健生,李自立,李怀科,等.HEM深水聚胺钻井液体系的研究与应用[J].钻井液与完井液,2014,31(1):20-23. Luo Jiansheng,Li Zili,Li Huaike,et al.Research and application of HEM poly-amine drilling fluids used in deep water operation[J].Drilling Fluid Completion Fluid,2014,31(1):20-23.
    [7]
    Marin J U,Shah F,Serrano M A,et al.First deepwater well successfully drilled in Colombia with a high-performance water-based fluid[R].SPE 120768,2009.
    [8]
    Davison J M,Clary S,Saasen A,et al.Rheology of various drilling fluid systems under deepwater drilling conditions and the importance of accurate predictions of downhole fluid hydraulics[R].SPE 56632,1999.
    [9]
    Herzhaft B,Peysson Y,Isambourg P,et al.Rheological properties of drilling muds in deep offshore conditions[R].SPE/IADC 67736,2001.
    [10]
    Rojas J C,Bern P,Plutt L J,et al.New constant-rheology synthetic-based fluid reduces downhole losses in deepwater environments[R].SPE 109586,2007.
    [11]
    罗健生,李自立,刘刚,等.深水用煤制油恒流变合成基钻井液体系的研制[J].中国海上油气,2014,26(1):74-77. Luo Jiansheng,Li Zili,Liu Gang,et al.Development of the coal liquefaction-based drilling fluid system with constant-rheology used in deep water[J].China Offshore Oil and Gas,2014,26(1):74-77.
    [12]
    Young S,Friedheim J,John Lee,et al.A new generation of flat rheology invert drilling fluids[R].SPE 154682,2012.
    [13]
    Zhong H,Qiu Z,Huang W,et al.Shale inhibitive properties of polyether diamine in water-based drilling fluid[J].Journal of Petroleum Science and Engineering,2011,78(2):510-515.
    [14]
    Zhao Xin,Qiu Zhengsong,Zhou Guowei,et al.Synergism of thermodynamic hydrate inhibitors on the performance of poly (vinyl pyrrolidone) in deepwater drilling fluid[J].Journal of Natural Gas Science and Engineering,2015,23:47-54.
    [15]
    赵欣,邱正松,黄维安,等.天然气水合物热力学抑制剂作用机制及优化设计[J].石油学报,2015,36(6):760-766. Zhao Xin,Qiu Zhengsong,Huang Weian,et al.Inhibition mechanism and optimized design of thermodynamic gas hydrate inhibitors[J].Acta Petrolei Sinica,2015,36(6):760-766.
    [16]
    赵欣,邱正松,石秉忠,等.深水聚胺高性能钻井液试验研究[J].石油钻探技术,2013,41(3):35-39. Zhao Xin,Qiu Zhengsong,Shi Bingzhong,et al.Experimental study on high performance polyamine drilling fluid for deepwater drilling[J].Petroleum Drilling Techniques,2013,41(3):35-39.
    [17]
    SY/T 6540—2002 钻井液完井液损害油层室内评价方法[S]. SY/T 6540—2002 Lab testing method of drilling and completion fluids damaging oil formation[S].
  • Cited by

    Periodical cited type(8)

    1. 田海涛. 浅析龙凤山北210区块钻井施工难点及控制措施. 中国石油和化工标准与质量. 2022(23): 92-94+97 .
    2. 崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术. 石油钻探技术. 2021(02): 9-13 . 本站查看
    3. 孙明杰,杨兴福,姜泉. 长岭区块钻井液施工井下复杂分析. 化工管理. 2021(08): 182-183 .
    4. 薛懿伟,陈立强,徐鲲,杨保健. 渤中19-6大气田深部潜山硬地层钻井提速技术研究与应用. 中国海上油气. 2020(04): 140-146 .
    5. 黄乘升. 龙凤山气田中基性火山岩钻井提速提效技术. 工业技术创新. 2020(05): 125-131 .
    6. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
    7. 胡群爱,孙连忠,张进双,张俊,刘仕银. 硬地层稳压稳扭钻井提速技术. 石油钻探技术. 2019(03): 107-112 . 本站查看
    8. 陈业鹏. 后五家户复杂深井钻井提速难点及技术探索. 探矿工程(岩土钻掘工程). 2018(07): 10-13 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (3707) PDF downloads (4125) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return