Sun Yuanwei, Cheng Yuanfang, Zhang Kuangsheng, Chang Xin, Wang Huaidong. Optimization of Fracture Parameters for Tight Gas Reservoir Considering Non-Darcy Effect[J]. Petroleum Drilling Techniques, 2014, 42(6): 87-91. DOI: 10.11911/syztjs.201406017
Citation: Sun Yuanwei, Cheng Yuanfang, Zhang Kuangsheng, Chang Xin, Wang Huaidong. Optimization of Fracture Parameters for Tight Gas Reservoir Considering Non-Darcy Effect[J]. Petroleum Drilling Techniques, 2014, 42(6): 87-91. DOI: 10.11911/syztjs.201406017

Optimization of Fracture Parameters for Tight Gas Reservoir Considering Non-Darcy Effect

More Information
  • Received Date: December 08, 2013
  • Revised Date: October 11, 2014
  • In order to determine the optimum design of the fracture parameters for tight gas reservoirs,effective permeability was introduced to modify the conventional proppant number considering the impact of non-Darcy effects on fracture permeability and conductivity.The boundary element method was used to make a chart which represented the relationship among the non-dimensional gas productivity index,the proppant number and the effective fracture conductivity,and then obtained an equation of f function.Next,the optimal parameters and conductivity of the fracture network were obtained through iterations of the algorithm,and formed an optimization method of fracture parameter in tight gas reservoir which considered non-Darcy effect and taken gas productivity as objective function.The data of tight gas reservoir in Sulige block was used to analyze the impact of non-Darcy effect on the optimization of fracture parameters.The results showed that,when considering non-Darcy effect,the proppant number was 20 percent of that without considering it,and the effective fracture conductivity was 33 percent,the optimal fracture length was reduced by 20 percent,and the width of fracture increased by 25 percent.In conclusion,the optimal design of tight gas reservoir fracture parameter can be calculated by revising the proppant number,which resulted in shorter and wider.
  • [1]
    李树松,段永刚,陈伟.中深致密气藏压裂水平井渗流特征[J].石油钻探技术,2006,34(5):65-69. Li Shusong,Duan Yonggang,Chen Wei.Porous flow characteristics of fractured horizontal well in mid deep tight gas reservoir[J].Petroleum Drilling Techniques,2006,34(5):65-69.
    [2]
    张恒,刘洋,李强,等.水平井裸眼分段压裂完井技术在苏里格气田的应用[J].石油钻探技术,2011,39(4):77-80. Zhang Heng,Liu Yang,Li Qiang,et al.Application of staged fracturing completion technology in horizontal openhole wells in Sulige Gas Field[J].Petroleum Drilling Techniques,2011,39(4):77-80.
    [3]
    曹阳,陈琛,史雪枝,等.川西致密气藏裸眼水平井分段压裂技术[J].石油钻探技术,2012,40(3):13-17. Cao Yang,Chen Chen,Shi Xuezhi,et al.Multi-stage fracturing techniques for open hole horizontal wells in Western Sichuan tight gas reservoirs[J].Petroleum Drilling Techniques,2012,40(3):13-17.
    [4]
    任俊杰,郭平,彭松,等.非对称裂缝压裂气井稳态产能研究[J].石油钻探技术,2014,42(4):97-101. Ren Junjie,Guo Ping,Peng Song,et al.Steady-state productivity for asymmetrically fractured gas wells[J].Petroleum Drilling Techniques,2014,42(4):97-101.
    [5]
    温庆志,王强.影响支撑剂长期导流能力的因素分析与探讨[J].内蒙古石油化工,2003,29(3):101-104. Wen Qingzhi,Wang Qiang.Analysis and discussion of effective factors on sustaining longtime diversion ability[J].Inner Mongulia Petrochemical Industry,2003,29(3):101-104.
    [6]
    刘斌, 方行, 颜晋川,等.低渗致密气藏压裂过程中伤害实验研究[J].断块油气田,2009,16(1):81-82,104. Liu Bin,Fang Xing,Yan Jinchuan,et al.Experimental study on fracturing damage in low permeability tight gas reservoir[J].Fault-Block Oil Gas Field,2009,16(1):81-82,104.
    [7]
    马新仿,Valko Peter.裂缝非达西渗流对气井水力压裂设计的影响[J].油气地质与采收率,2010,17(5):83-85. Ma Xinfang,Valko Peter.The effects of non-Darcy flow on design of hydraulically fractured gas well[J].Petroleum Geology and Recovery Efficiency,2010,17(5):83-85.
    [8]
    蒋廷学,王欣,王永辉.压裂优化设计方案的模糊决策方法及应用[J].石油钻采工艺,1997,19(4):74-76. Jiang Tingxue,Wang Xin,Wang Yonghui.Fuzzy decision method and its application for well fracturing program optimization design[J].Oil Drilling Production Technology,1997,19(4):74-76.
    [9]
    钟森.SF 气田水平井分段压裂关键参数优化设计[J].断块油气田,2013,20(4):525-529,534. Zhong Sen.Key parameter optimization design of staged fracturing for horizontal well in SF Gas Field[J].Fault-Block Oil Gas Field,2013,20(4):525-529,534.
    [10]
    曲占庆,黄德胜,李小龙,等.低渗气藏压裂水平井裂缝参数优化研究与应用[J].断块油气田,2014,21(4):486-491. Qu Zhanqing,Huang Desheng,Li Xiaolong,et,al.Research and application of fracture parameter optimization of fractured horizontal well in low permeability gas reservoir[J].Fault-Block Oil and Gas Field,2014,21(4):486-491.
    [11]
    Oligeny R,Economides M.Unified fracture design[M].Houston:Orsa Press,2002.
    [12]
    Valko P P,Economides M J.Heavy crude production from shallow formations:long horizontal wells versus horizontal fractures[R].SPE 50421,1998.
    [13]
    金智荣,郭建春,赵金洲,等.复杂条件下支撑裂缝导流能力试验研究与分析[J].石油天然气学报,2007,29(3):284-287. Jin Zhirong,Guo Jianchun,Zhao Jinzhou,et al.Experimental study and analyses on flow conductivity of fracture proppant under extreme conditions[J].Journal of Oil and Gas Technology,2007,29(3):284-287.
    [14]
    王雷,张士诚,张文宗,等.复合压裂不同粒径支撑剂组合长期导流能力实验研究[J].天然气工业,2005,25(9):64-66. Wang Lei,Zhang Shicheng,Zhang Wenzong,et al.Experimental research on long-term conductivity of the proppant combination with different grain sizes in complex fracturing[J].Natural Gas Industry,2005,25(9):64-66.
    [15]
    卢聪,郭建春,王文耀,等.支撑剂嵌入及对裂缝导流能力损害的实验[J].天然气工业,2008,28(2):99-101. Lu Cong,Guo Jianchun,Wang Wenyao,et al.Experimental research on proppant embedment and its damage to fractures conductivity[J].Natural Gas Industry,2008,28(2):99-101.
    [16]
    Lopez-Hernandez H D,Valko P P,Pham T T.Optimum fracture treatment design minimizes the impact of non Darcy flow effects[R].SPE 90195,2004.
    [17]
    Geertsma J.Estimating the coefficient of inertial resestance in fluid flow through porous media[J].Society of Petroleum Engineers Journal,1974,14(5):445-450.
    [18]
    Cooke C E Jr.Conductivity of fracture proppants in multiple layers[J].JPT,1973,25(9):1101-1107.
    [19]
    Penny G S,Jin Liang.The development of laboratory correlations showing the impact of multiphase flow,fluid,and proppant selection upon gas well productivity[R].SPE 30494,1995.
    [20]
    Heber Cinco L,Samaniego F V,Dominguez A N.Transient pressure behavior for a well with a finite-conductivity vertical fracture[R].SPE 6014,1978.
    [21]
    Valko P P,Doublet L E,Blasingame T A.Development and application of the multiwell productivity index(MPI)[R].SPE 51793,2000.
    [22]
    Romero D J.Direct boundary method to calculate pseundo-steady-state productivity index of a fractured well with fracture face skin and choked skin[D].College Station:Texas A M University,2001.
    [23]
    Remero D J,Valko P P,Economides M J.The optimization of the productivity index and the fracture geometry of a stimulated well with fracture face and choke skins[R].SPE 73758,2002. Baker Hughes公司新型高温高压测井工具 Nautilus UltraBaker Hughes公司推出了新型高温高压测井工具 Nautilus Ultra,可用于260 ℃超高温及207 MPa超高压环境.该工具主要包括高温高压伽马测井工具Nautilus Ultra GR/SL(自然伽马工具Nautilus Ultra GR和伽马能谱测井工具Nautilus-SL).2种伽马工具皆采用标准扣型,可与任一款Nautilus Ultra工具配接.伽马能谱工具具备钾、钍、铀量化计数功能,可提供精确的地层剖面.阵列感应电阻率测井工具Nautilus-HDIL可用于水基和油基钻井液工作环境,测试结果包括6条不同的电阻率曲线,垂直分辨率高,探测深度大,可用作地层电阻率、侵蚀带电阻率、钻井液侵入清除等的分析评价.单、偶极子全波列声波测井工具Nautilus-XMAC具有单极子、偶极子和交叉偶极子3种发射形式,全波阵列波形,波形采集率达9.14 m/min,可用于低速地层,具备剪切慢速分析功能.此外,该工具还包括密度及孔隙性探测工具Nautilus-CDL,补偿中子孔隙度探测工具Nautilus-CN,电缆头张力、井眼温度、钻井液电阻率传感器测量短节Nautilus-TTRM和测量井眼尺寸的三臂卡钳等.
  • Related Articles

    [1]CAI Jiguang, WANG Chuan, FANG Haoqing, GOU Bo, WANG Kun, REN Jichuan. Evaluation Method for the Conductivity of Full-Length Sand-Packed Acid-Etched Fractures[J]. Petroleum Drilling Techniques, 2023, 51(1): 78-85. DOI: 10.11911/syztjs.2023015
    [2]LI Jiang, CHEN Xianchao, GAO Ping, SHU Chenglong. A Pseudo-Steady-State Productivity Prediction Method for Fractured Carbonate Gas Wells Considering Stress-Sensitivity Effects[J]. Petroleum Drilling Techniques, 2021, 49(3): 111-116. DOI: 10.11911/syztjs.2021032
    [3]HUANG Yingsong. Solution of Nonlinear Seepage Model for Fracture Well Groupin Low Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(6): 96-102. DOI: 10.11911/syztjs.2019078
    [4]JIA Guangliang, SHAO Tong, YIN Xiaoxia, JIANG Shangming, XU Wensi, WANG Yuzhu. Volumetric Fracturing with Mixed Water in Tight Gas Reservoirsin the Hangjinqi Block[J]. Petroleum Drilling Techniques, 2019, 47(2): 87-92. DOI: 10.11911/syztjs.2018143
    [5]CHEN Dong, WANG Nanzhe, YE Zhihui, ZHANG Jialiang. Propped Fracture Conductivity Evolution under a Combination of Compaction and Embedment: Establishing a Model and Analyzing the Influencing Factors[J]. Petroleum Drilling Techniques, 2018, 46(6): 82-89. DOI: 10.11911/syztjs.2018148
    [6]YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
    [7]Yang Huanqiang, Wang Ruihe, Zhou Weidong, Li Luopeng, Gui Jie. Testing and Simulating the Effect on Fracturing of Port Parameters of a Cemented Sliding Sleeve[J]. Petroleum Drilling Techniques, 2015, 43(2): 54-58. DOI: 10.11911/syztjs.201502010
    [8]Bian Xiaobing, Jiang Tingxue, Jia Changgui, Li Shuangming, Wang Lei. Production Prediction of Fractured Horizontal Well in Shale Gas Reservoirs Considering Long-Term Flow Conductivity[J]. Petroleum Drilling Techniques, 2014, 42(5): 37-41. DOI: 10.11911/syztjs.201405006
    [9]Ren Junjie, Guo Ping, Peng Song, Jiang Kaikai. Steady-State Productivity for Asymmetrically Fractured Gas Wells[J]. Petroleum Drilling Techniques, 2014, 42(4): 97-101. DOI: 10.3969/j.issn.1001-0890.2014.04.018
    [10]Xu Chengyuan, Kang Yili, You Lijun, Wang Mingwei, Li Daqi. Influential Factors on Permeability Recovery during Flowback of Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2012, 40(6): 17-21. DOI: 10.3969/j.issn.1001-0890.2012.06.004
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (2706) PDF downloads (3700) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return