Li Yang, Deng Jingen, Yu Baohua, Liu Wei, Chen Jianguo. Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment[J]. Petroleum Drilling Techniques, 2014, 42(6): 80-86. DOI: 10.11911/syztjs.201406016
Citation: Li Yang, Deng Jingen, Yu Baohua, Liu Wei, Chen Jianguo. Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment[J]. Petroleum Drilling Techniques, 2014, 42(6): 80-86. DOI: 10.11911/syztjs.201406016

Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment

More Information
  • Received Date: March 28, 2014
  • Revised Date: August 03, 2014
  • In order to estimate effects of reservoir rock/barrier and interfacial properties on hydraulic fracture height control,studies were done to analyze and compare the effects of rock elastic modulus,in situ stress,and tensile strength on fracture height containment ability by Cohesive element based on the ABAQUS computing platform.Through numerical simulation,it was deduced that a barrier with high elastic modulus was not impeded when the fracture grows through the bonding interface,but was had an impact on the fracture height in the barrier.A barrier with minimum in situ stress and high tensile strength could significantly hinder the fracture height.The fracture height increased quickly when the interfacial shear strength of reservoir rock/barrier was beyond a critical value,and the fracture height was confined fully by the reservoir when the interfacial shear strength was lower than the critical value.Under proper conditions,the fracture propagated vertically in the reservoir and horizontally the interface,and thus develop into a T-shaped fracture.The research results showed that barrier with a high elastic modulus adversely affected fracture height containment.A barrier with minimum in situ stress and high tensile strength could strongly inhibit the fracture height propagation.The impact of in situ stress was about 1.6 times of tensile strength.The lower the shear strength of the interface,the easier for the reservoir rock/barrier to slip,which helped to contain the fracture height.
  • [1]
    Liu He,Wang Han,Wu Heng’an,et al.Effect of reservoir porosity and clay content on hydraulic fracture height containment.IPTC 16415,2013.
    [2]
    Gu Hongren,Siebrits E.Effect of formation modulus contrast on hydraulic fracture height containment[R].SPE 103822,2006.
    [3]
    Smith M B,Bale A B,Britt L K,et al.Layered modulus effects on fracture propagation,proppant placement,and fracture modeling[R].SPE 71654,2001.
    [4]
    Daneshy A A.Factors controlling the vertical growth of hydraulic fractures[R].SPE 118789,2009.
    [5]
    Daneshy A A.Hydraulic fracture propagation in layered formations[J].SPE Journal,1978,18(1):33-41.
    [6]
    Daneshy A A.Hydraulic fracture propagation in the presence of planes of weakness[R].SPE 4852,1974.
    [7]
    Barree R D,Winterfeld P H.Effects of shear planes and interfacial slippage on fracture growth and treating pressures[R].SPE 48926,1998.
    [8]
    Anderson G.Effects of friction on hydraulic fracture growth near unbonded interfaces in rocks[J].SPE Journal,1981,21(1):21-29.
    [9]
    黄荣樽.水力压裂裂缝的起裂和扩展[J].石油勘探与开发,1981,8(5):62-74. Huang Rongzun.The initiation and propagation of hydraulic fracture[J].Petroleum Exploration and Development,1981,8 (5):62-74.
    [10]
    周文高,胡永全,赵金洲,等.控制压裂缝高技术研究及影响因素分析[J].断块油气田,2006,13(4):70-72. Zhou Wengao,Hu Yongquan,Zhao Jinzhou,et al.Research on fracture height containment technology and analysis of influence factors[J].Fault-Block Oil Gas Field,2006,13(4):70-72.
    [11]
    Fisher M K,Warpinski N R.Hydraulic-fracture-height growth:real data[J].SPE Production Operations,2012,27(1):8-19.
    [12]
    陈治喜,陈勉,黄荣樽,等.层状介质中水力裂缝的垂向扩展[J].石油大学学报:自然科学版,1997,21(4):23-26,32. Chen Zhixi,Chen Mian,Huang Rongzun,et al.Vertical growth of hydraulic fracture in layered formations[J].Journal of the University of Petroleum,China:Edition of Natural Science,1997,21(4):23-26,32.
    [13]
    王瀚,刘合,张劲,等.水力裂缝的缝高控制参数影响数值模拟研究[J].中国科学技术大学学报,2011,41(9):820-825. Wang Han,Liu He,Zhang Jin,et al.Numerical simulation of hydraulic fracture height control with different parameters[J].Journal of University of Science and Technology of China,2011,41(9):820-825.
    [14]
    Tomar V,Zhai Jun,Zhou Min.Bounds for element size in a variable stiffness cohesive finite element model[J].International Journal for Numerical Methods in Engineering,2004,61(11):1894-1920.
    [15]
    Camanho P P,Dávila C G.Mixed-mode decohesion finite elements for the simulation of delamination in composite materials.NASA/TM-2002-211737,2002.
    [16]
    Turon A,Camanho P P,Costa J,et al.A damage model for the simulation of delamination in advanced composites under variable-mode loading[J].Mechanics of Materials,2006,38(11):1072-1089.
    [17]
    Economides M J,Nolte K G,Ahmed U.Reservoir stimulation[M].Chichester:Wiley,2000:5.15-5.16.
    [18]
    Hagoort J,Weatherill B,Settari A.Modeling the propagation of waterflood-induced hydraulic fractures[J].SPE Journal,1980,20(4):293-303.
    [19]
    Peirce A,Detournay E.An implicit level set method for modeling hydraulically driven fractures[J].Computer Methods in Applied Mechanics and Engineering,2008,197(33-40):2858-2885.
    [20]
    Fjar E,Holt R M,Raaen A M,et al.Petroleum related rock mechanics[M].2nd ed.Amsterdam:Elsevier,2008:60-64.
    [21]
    贾喜荣.岩石力学与岩层控制[M].徐州:中国矿业大学出版社,2010:111-114. Jia Xirong.Rock mechanics and strata control[M].Xuzhou:China University of Mining and Technology Press,2010:111-114.
  • Cited by

    Periodical cited type(9)

    1. 马涛,张超,王巍,韩成,魏佳. 基于相关系数法的涠西南凹陷潜山地层提速技术. 石化技术. 2024(01): 53-55+58 .
    2. 李昕楠. 钻井工具在大庆深层提速设计中的应用. 石油和化工设备. 2024(06): 118-120+141 .
    3. 王姝. 提速工具大庆深部难钻地层中的应用研究. 西部探矿工程. 2020(03): 115-117 .
    4. 张以明,李晶莹,罗玉财,杨恺,王东明,曹小兵,彭宇,赵伟峰,钟小军,卢昊. 饶阳凹陷中央深潜山带钻井提速配套技术与应用. 中国石油勘探. 2020(06): 87-93 .
    5. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
    6. 侯小锋. 提速工具在大庆深层天然气井中的应用. 西部探矿工程. 2019(08): 33-34+37 .
    7. 周长所. 渤海深层钻井技术优化与实践. 石油化工应用. 2019(11): 55-59 .
    8. 周长所,幸雪松,耿亚楠,何英明. 渤中潜山高温凝析气藏钻井关键技术与应用. 重庆科技学院学报(自然科学版). 2019(06): 46-50+73 .
    9. 和鹏飞. 渤海潜山油藏钻井配套技术的研究与应用. 海洋工程装备与技术. 2017(01): 19-24 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (2781) PDF downloads (3778) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return