Li Yang, Deng Jingen, Yu Baohua, Liu Wei, Chen Jianguo. Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment[J]. Petroleum Drilling Techniques, 2014, 42(6): 80-86. DOI: 10.11911/syztjs.201406016
Citation: Li Yang, Deng Jingen, Yu Baohua, Liu Wei, Chen Jianguo. Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment[J]. Petroleum Drilling Techniques, 2014, 42(6): 80-86. DOI: 10.11911/syztjs.201406016

Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment

More Information
  • Received Date: March 28, 2014
  • Revised Date: August 03, 2014
  • In order to estimate effects of reservoir rock/barrier and interfacial properties on hydraulic fracture height control,studies were done to analyze and compare the effects of rock elastic modulus,in situ stress,and tensile strength on fracture height containment ability by Cohesive element based on the ABAQUS computing platform.Through numerical simulation,it was deduced that a barrier with high elastic modulus was not impeded when the fracture grows through the bonding interface,but was had an impact on the fracture height in the barrier.A barrier with minimum in situ stress and high tensile strength could significantly hinder the fracture height.The fracture height increased quickly when the interfacial shear strength of reservoir rock/barrier was beyond a critical value,and the fracture height was confined fully by the reservoir when the interfacial shear strength was lower than the critical value.Under proper conditions,the fracture propagated vertically in the reservoir and horizontally the interface,and thus develop into a T-shaped fracture.The research results showed that barrier with a high elastic modulus adversely affected fracture height containment.A barrier with minimum in situ stress and high tensile strength could strongly inhibit the fracture height propagation.The impact of in situ stress was about 1.6 times of tensile strength.The lower the shear strength of the interface,the easier for the reservoir rock/barrier to slip,which helped to contain the fracture height.
  • [1]
    Liu He,Wang Han,Wu Heng’an,et al.Effect of reservoir porosity and clay content on hydraulic fracture height containment.IPTC 16415,2013.
    [2]
    Gu Hongren,Siebrits E.Effect of formation modulus contrast on hydraulic fracture height containment[R].SPE 103822,2006.
    [3]
    Smith M B,Bale A B,Britt L K,et al.Layered modulus effects on fracture propagation,proppant placement,and fracture modeling[R].SPE 71654,2001.
    [4]
    Daneshy A A.Factors controlling the vertical growth of hydraulic fractures[R].SPE 118789,2009.
    [5]
    Daneshy A A.Hydraulic fracture propagation in layered formations[J].SPE Journal,1978,18(1):33-41.
    [6]
    Daneshy A A.Hydraulic fracture propagation in the presence of planes of weakness[R].SPE 4852,1974.
    [7]
    Barree R D,Winterfeld P H.Effects of shear planes and interfacial slippage on fracture growth and treating pressures[R].SPE 48926,1998.
    [8]
    Anderson G.Effects of friction on hydraulic fracture growth near unbonded interfaces in rocks[J].SPE Journal,1981,21(1):21-29.
    [9]
    黄荣樽.水力压裂裂缝的起裂和扩展[J].石油勘探与开发,1981,8(5):62-74. Huang Rongzun.The initiation and propagation of hydraulic fracture[J].Petroleum Exploration and Development,1981,8 (5):62-74.
    [10]
    周文高,胡永全,赵金洲,等.控制压裂缝高技术研究及影响因素分析[J].断块油气田,2006,13(4):70-72. Zhou Wengao,Hu Yongquan,Zhao Jinzhou,et al.Research on fracture height containment technology and analysis of influence factors[J].Fault-Block Oil Gas Field,2006,13(4):70-72.
    [11]
    Fisher M K,Warpinski N R.Hydraulic-fracture-height growth:real data[J].SPE Production Operations,2012,27(1):8-19.
    [12]
    陈治喜,陈勉,黄荣樽,等.层状介质中水力裂缝的垂向扩展[J].石油大学学报:自然科学版,1997,21(4):23-26,32. Chen Zhixi,Chen Mian,Huang Rongzun,et al.Vertical growth of hydraulic fracture in layered formations[J].Journal of the University of Petroleum,China:Edition of Natural Science,1997,21(4):23-26,32.
    [13]
    王瀚,刘合,张劲,等.水力裂缝的缝高控制参数影响数值模拟研究[J].中国科学技术大学学报,2011,41(9):820-825. Wang Han,Liu He,Zhang Jin,et al.Numerical simulation of hydraulic fracture height control with different parameters[J].Journal of University of Science and Technology of China,2011,41(9):820-825.
    [14]
    Tomar V,Zhai Jun,Zhou Min.Bounds for element size in a variable stiffness cohesive finite element model[J].International Journal for Numerical Methods in Engineering,2004,61(11):1894-1920.
    [15]
    Camanho P P,Dávila C G.Mixed-mode decohesion finite elements for the simulation of delamination in composite materials.NASA/TM-2002-211737,2002.
    [16]
    Turon A,Camanho P P,Costa J,et al.A damage model for the simulation of delamination in advanced composites under variable-mode loading[J].Mechanics of Materials,2006,38(11):1072-1089.
    [17]
    Economides M J,Nolte K G,Ahmed U.Reservoir stimulation[M].Chichester:Wiley,2000:5.15-5.16.
    [18]
    Hagoort J,Weatherill B,Settari A.Modeling the propagation of waterflood-induced hydraulic fractures[J].SPE Journal,1980,20(4):293-303.
    [19]
    Peirce A,Detournay E.An implicit level set method for modeling hydraulically driven fractures[J].Computer Methods in Applied Mechanics and Engineering,2008,197(33-40):2858-2885.
    [20]
    Fjar E,Holt R M,Raaen A M,et al.Petroleum related rock mechanics[M].2nd ed.Amsterdam:Elsevier,2008:60-64.
    [21]
    贾喜荣.岩石力学与岩层控制[M].徐州:中国矿业大学出版社,2010:111-114. Jia Xirong.Rock mechanics and strata control[M].Xuzhou:China University of Mining and Technology Press,2010:111-114.
  • Cited by

    Periodical cited type(6)

    1. 李朋,张艳玉,孙晓飞,李冬冬,刘洋,陈会娟. SAGD循环预热割缝筛管参数影响规律研究. 工程热物理学报. 2020(04): 940-947 .
    2. 薛衡,黄祖熹,王贺华,安永生,刘榧,成一,何冰,刘卡. Ahdeb油田水平井控水完井及一体化耦合模型. 石油与天然气地质. 2019(02): 423-429 .
    3. 李朋,张艳玉,孙晓飞,陈会娟,刘洋. 稠油油藏双管水平井注汽井筒参数预测新模型. 特种油气藏. 2019(04): 85-90 .
    4. 李朋,张艳玉,孙晓飞,刘洋,谢孟珂,王朝,陈会娟. SAGD循环预热注汽参数影响规律数值模拟. 中南大学学报(自然科学版). 2019(11): 2896-2905 .
    5. 陈会娟,李明忠,狄勤丰,刘春苗. 多点注汽水平井井筒出流规律数值模拟. 石油学报. 2017(06): 696-704 .
    6. 徐磊. 稠油热采井防砂筛管热稳定性优化仿真分析. 北京石油化工学院学报. 2016(02): 40-45 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (2781) PDF downloads (3778) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return