YANG Kaiji, ZHANG Ying, WEI Qiang, et al. Development and performance evaluation of emulsion polymer with temperature resistance and salt resistance used in offshore oilfield development [J]. Petroleum Drilling Techniques, 2024, 52(4):118-127. DOI: 10.11911/syztjs.2024010
Citation: YANG Kaiji, ZHANG Ying, WEI Qiang, et al. Development and performance evaluation of emulsion polymer with temperature resistance and salt resistance used in offshore oilfield development [J]. Petroleum Drilling Techniques, 2024, 52(4):118-127. DOI: 10.11911/syztjs.2024010

Development and Performance Evaluation of Emulsion Polymer with Temperature Resistance and Salt Resistance Used in Offshore Oilfield Development

More Information
  • Received Date: September 22, 2023
  • Revised Date: April 30, 2024
  • Available Online: May 28, 2024
  • In order to meet the demand for rapid dissolution, temperature resistance, and salt resistance of polymers in offshore oilfield development, the emulsion polymer with ultra-high relative molecular weight, rapid dissolution, temperature resistance, and salt resistance was prepared by low-temperature composite initiation system using self-made high efficient polymer emulsifier and heat stabilizer. In addition, the effects of the preparation process, cosolvent amount, functional monomer amount, and heat stabilizer amount on the performance of polymers were studied. The results show that the polymers with a relative molecular weight of 22–24 million can be obtained through process optimization. Urea and sodium sulfate can significantly improve the dissolution rate of the emulsion polymer with ultra-high relative molecular weight, temperature resistance, and salt resistance. Adding N,N-dimethylacrylamide, self-made heat stabilizer, and sodium 2-acrylamide-2-methylpropane sulfonate during polymerization can significantly improve the temperature resistance and salt resistance of the polymer. The structure and properties of the emulsion polymer with ultra-high relative molecular weight, temperature resistance, and salt resistance were characterized by electron microscopy, laser particle analyzer, gel permeation chromatography (GPC), and thermogravimetry (TGA). The results indicated that the prepared polymer has uniform emulsion particle distribution, narrow relative molecular weight distribution, and good temperature resistance. The viscosity retention rate of the emulsion polymer within 30 days was more than 90% at a salinity of 35 000 mg/L and temperature of 75 °C. The results reveal that the emulsion polymer with ultra-high relative molecular weight, temperature resistance, and salt resistance has the characteristics of rapid dissolution, high relative molecular weight, and good temperature resistance and salt resistance and can be widely used in offshore oilfield development by oil displacement.

  • [1]
    孙凤林,陈岩,王锦林,等. 储层矿物对渤海油田化学驱影响的探讨[J]. 精细与专用化学品,2023,31(3):10–13.

    SUN Fenglin, CHEN Yan, WANG Jinlin, et al. Discussion on the influence of clay mineral content on chemical flooding in Bohai Oilfield[J]. Fine and Specialty Chemicals, 2023, 31(3): 10–13.
    [2]
    徐长贵,赖维成,张新涛,等. 中国海油油气勘探新进展与未来勘探思考[J]. 中国海上油气,2023,35(2):1–12.

    XU Changgui, LAI Weicheng, ZHANG Xintao, et al. New progress and future exploration thinking of CNOOC oil and gas explo-ration[J]. China Offshore Oil and Gas, 2023, 35(2): 1–12.
    [3]
    孙福街. 中国海上油田高效开发与提高采收率技术现状及展望[J]. 中国海上油气,2023,35(5):91–99.

    SUN Fujie. Status and prospects of efficient development and EOR technologies in China offshore oilfields[J]. China Offshore Oil and Gas, 2023, 35(5): 91–99.
    [4]
    张玉,王凤,魏丽敏,等. 国内外化学驱技术标准对比[J]. 油田化学,2021,38(4):727–731.

    ZHANG Yu, WANG Feng, WEI Limin, et al. Comparison of domestic and international standards for chemical flooding[J]. Oilfield Chemistry, 2021, 38(4): 727–731.
    [5]
    刘学伟. 耐温抗盐型高效聚合物驱油剂的研制及应用[J]. 断块油气田,2020,27(4):474–477.

    LIU Xuewei. Development and application of high efficiency polymer flooding agent with temperature and salt resistance[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 474–477.
    [6]
    王丽莉,梁严,李文宏,等. 离子组成对中低分子量聚合物抗盐行为的影响[J]. 西南石油大学学报(自然科学版),2023,45(4):174–184.

    WANG Lili, LIANG Yan, LI Wenhong, et al. Effect of ion composition on the salt-tolerance behavior of medium-low molecular weight polymers[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(4): 174–184.
    [7]
    周泉,张世东,周万富. 聚合物−表面活性剂二元抗盐体系注入性能评价[J]. 特种油气藏,2023,30(1):120–125. doi: 10.3969/j.issn.1006-6535.2023.01.017

    ZHOU Quan, ZHANG Shidong, ZHOU Wanfu. Evaluation and study of injection performance of binary system of anti-salt polymer and surfactant[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 120–125. doi: 10.3969/j.issn.1006-6535.2023.01.017
    [8]
    刘建坤,蒋廷学,黄静,等. 纳米材料改善压裂液性能及驱油机理研究[J]. 石油钻探技术,2022,50(1):103–111. doi: 10.11911/syztjs.2021118

    LIU Jiankun, JIANG Tingxue, HUANG Jing, et al. Study on mechanism of the fracturing fluid performance improvement and oil displacement using nanomaterials[J]. Petroleum Drilling Techniques, 2022, 50(1): 103–111. doi: 10.11911/syztjs.2021118
    [9]
    陶光辉,束华东,刘斌. 古城油田B125区块稠油油藏超高分子量聚合物驱技术[J]. 石油钻探技术,2020,48(1):66–71. doi: 10.11911/syztjs.2019127

    TAO Guanghui, SHU Huadong, LIU Bin. Ultra-high molecular weight polymer flooding technology for heavy oil reservoirs in Block B125 of the Gucheng Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 66–71. doi: 10.11911/syztjs.2019127
    [10]
    贾志伟,程长坤,朱秀雨,等. 青海油田尕斯N1-N21超高盐油藏复合驱提高采收率技术[J]. 石油钻探技术,2021,49(5):81–87. doi: 10.11911/syztjs.2021121

    JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, et al. Oil recovery enhancement by composite flooding technology for Gasi N1-N21 ultra-high-salinity reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81–87. doi: 10.11911/syztjs.2021121
    [11]
    姜维东,张健,吕鑫. 渤海油田新型驱油剂驱油效果研究[J]. 石油地质与工程,2012,26(3):109–112. doi: 10.3969/j.issn.1673-8217.2012.03.034

    JIANG Weidong, ZHANG Jian, LYU Xin. Study on displacement efficiency of new flooding agent in Bohai Oilfield[J]. Petroleum Geology and Engineering, 2012, 26(3): 109–112. doi: 10.3969/j.issn.1673-8217.2012.03.034
    [12]
    山金城,李保振,张延旭,等. 海上油田化学驱技术研究与应用进展[J]. 科技导报,2020,38(17):127–133.

    SHAN Jincheng, LI Baozhen, ZHANG Yanxu, et al. Review of the development and field application of worldwide offshore chemical EOR technology[J]. Science & Technology Review, 2020, 38(17): 127–133.
    [13]
    张凤久,姜伟,孙福街,等. 海上稠油聚合物驱关键技术研究与矿场试验[J]. 中国工程科学,2011,13(5):28–33. doi: 10.3969/j.issn.1009-1742.2011.05.005

    ZHANG Fengjiu, JIANG Wei, SUN Fujie, et al. Key technology research and field test of offshore viscous polymer flooding[J]. Strategic Study of CAE, 2011, 13(5): 28–33. doi: 10.3969/j.issn.1009-1742.2011.05.005
    [14]
    YEE H V, BT HALIM N H, BT SALLEH I K, et al. Managing chemical EOR (ASP) effects on formation damage and flow assurance in Malay Basin, Malaysia[R]. IPTC 16777, 2013.
    [15]
    李晓风,肖传敏,郭斐,等. 中低渗高凝油藏用聚合物的相对分子质量设计与应用[J]. 油田化学,2023,40(3):467–472.

    LI Xiaofeng, XIAO Chuanmin, GUO Fei, et al. Design and application of molecular weight of polymer in medium-low permeability and high pour point reservoirs[J]. Oilfield Chemistry, 2023, 40(3): 467–472.
    [16]
    朱振坤,李海成,高光磊,等. 大庆油田化学驱分层注入技术现状与发展趋势[J]. 石油钻采工艺,2022,44(5):642–647.

    ZHU Zhenkun, LI Haicheng, GAO Guanglei, et al. Status and trend of chemical flooding and layered injection technology in Daqing Oilfield[J]. Oil Drilling & Production Technology, 2022, 44(5): 642–647.
    [17]
    GB/T 17514—2017 水处理剂:阴离子和非离子型聚丙烯酰胺[S].

    GB/T 17514—2017 Water treatment chemicals: Anionic and non-ionic polyacrylamides[S].
    [18]
    TAMSILIAN Y, RAMAZANI S A A, SHABAN M, et al. High molecular weight polyacrylamide nanoparticles prepared by inverse emulsion polymerization: reaction conditions-properties relationships[J]. Colloid and Polymer Science, 2016, 294(3): 513–525. doi: 10.1007/s00396-015-3803-5
    [19]
    YAO Chuanjin, LEI Guanglun, GAO Xuemei, et al. Controllable preparation, rheology, and plugging property of micron-grade polyacrylamide microspheres as a novel profile control and flooding agent[J]. Journal of Applied Polymer Science, 2013, 130(2): 1124–1130. doi: 10.1002/app.39283
    [20]
    POURJAVADI A, BASSAMPOUR Z, GHASEMZADEH H, et al. Porous carrageenan-g-polyacrylamide/bentonite superabsorbent co-mposites: swelling and dye adsorption behavior[J]. Journal of Polymer Research, 2016, 23(3): 60. doi: 10.1007/s10965-016-0955-z
    [21]
    TAMSILIAN Y, RAMAZANI S A A, SHABAN M, et al. Nanostructured particles for controlled polymer release in enhanced oil recovery[J]. Energy Technology, 2016, 4(9): 1035–1046. doi: 10.1002/ente.201600036
    [22]
    ZHENG Huaili, SUN Yongjun, ZHU Chuanjun, et al. UV-initiated polymerization of hydrophobically associating cationic flocculants: synthesis, characterization, and dewatering properties[J]. Chemical Engineering Journal, 2013, 234: 318–326. doi: 10.1016/j.cej.2013.08.098
    [23]
    MA Jiangya, SHI Jun, DING Lei, et al. Removal of emulsified oil from water using hydrophobic modified cationic polyacrylamide flocculants synthesized from low-pressure UV initiation[J]. Separation and Purification Technology, 2018, 197: 407–417. doi: 10.1016/j.seppur.2018.01.036
    [24]
    ZHONG J X, CLEGG J R, ANDER E W, et al. Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization[J]. Journal of Biomedical Materials Research Part A, 2018, 106(6): 1677–1686. doi: 10.1002/jbm.a.36371
    [25]
    LIU Ya, LYU Cuicui, DING Jian, et al. Characterization of a hybrid polyacrylamide and its flocculation properties in cyanide tailing suspensions[J]. Water Science and Technology, 2017, 76(9): 2482–2493. doi: 10.2166/wst.2017.422
  • Related Articles

    [1]SONG Qian. Development and Field Test of a New Type of Targeted Viscosity-Increasing Oil Displacement Agent[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025036
    [2]JI Wendong, WAN Jifang, HE Yuxian, LI Jingcui, LIU Wei, SUN Peng. Key Technologies and Prospect of Salt Cavern Hydrogen Storage in China[J]. Petroleum Drilling Techniques, 2024, 52(4): 158-166. DOI: 10.11911/syztjs.2024055
    [3]ZHOU Qicheng, LIANG Yinghong, SHAN Haixia, HUANG Tao, GUO Anping, WANG Junxiang. Research and Application of a High-Temperature Resistant and High-Density Biomass Drilling Fluid System[J]. Petroleum Drilling Techniques, 2022, 50(6): 78-84. DOI: 10.11911/syztjs.2022109
    [4]XIE Guanbao, TENG Chunming, LIU Huajie. Study on the Influence of Salt Rock Creep on the Integrity of Cement Sheath Gas Seals[J]. Petroleum Drilling Techniques, 2022, 50(2): 78-84. DOI: 10.11911/syztjs.2021113
    [5]MING Yuguang, LAN Qiang, LI Hui, LIU Zhendong, BU Fankang. Research and Field Testing of High Temperature Resistant Foam Drilling Fluid in Deep Wells[J]. Petroleum Drilling Techniques, 2018, 46(6): 47-53. DOI: 10.11911/syztjs.2018139
    [6]CHEN Xiaohui, GAO Bingtang, SONG Zhaohui. Research on Downhole Electromagnetic Repeater Transmission Characteristics in Ultra High Resistivity Gypsum-Salt Layers[J]. Petroleum Drilling Techniques, 2018, 46(3): 114-119. DOI: 10.11911/syztjs.2018092
    [7]ZHANG Junjiang, DU Linlin, YING Hailing, ZHANG Bin. Synthesis and Field Tests of High Temperature Resistant and Salt Tolerant Acid ThickenerTP-17[J]. Petroleum Drilling Techniques, 2017, 45(6): 93-98. DOI: 10.11911/syztjs.201706017
    [8]WANG Xiaojun. The Development and Application of Solid-Free Micro-Foam Drilling Fluid with Temperature Resistance and Salt Tolerance[J]. Petroleum Drilling Techniques, 2016, 44(2): 58-64. DOI: 10.11911/syztjs.201602010
    [9]Lü Kaihe, Yang Peng, Li Jiancheng, Wei Hu, Wang Xiaojun. Research and Evaluation of Clay-Free Drilling Fluids with High Temperature Resistance[J]. Petroleum Drilling Techniques, 2012, 40(5): 30-34. DOI: 10.3969/j.issn.1001-0890.2012.05.007
    [10]Yang Xiaofeng. Application of High Temperature Resisting sureshot-MWD in Xinggu 7 Block[J]. Petroleum Drilling Techniques, 2012, 40(1): 119-122. DOI: 10.3969/j.issn.1001-0890.2012.01.024

Catalog

    Article Metrics

    Article views (128) PDF downloads (34) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return