Citation: | SONG Zhaohui. Preparation and performance evaluation of raspberry-like polymer nano-micro plugging agent [J]. Petroleum Drilling Techniques, 2024, 52(3):84-90. DOI: 10.11911/syztjs.2024059 |
In order to solve the problem of wellbore instability in hard and brittle shale formations, nano-micro plugging agents have been developed in China and abroad by emulsion polymerization method. However, the nano-micro size of the plugging agent during application is difficult to maintain, and the drilling fluid is easy to foam. To this end, styrene and methyl methacrylate were used as monomers for polymerization, and divinylbenzene was used as an internal crosslinking agent for polymerization, with starch nanoparticles as emulsion stabilizers. A raspberry-like nano-micro plugging agent (i.e. raspberry-like crosslinked P (St-co-MMA) microspheres with starch nanoparticles adsorbed on the surface) was prepared by Pickering emulsion polymerization method for water-based drilling fluids. The particle size, morphology, and structure characteristics of crosslinked P(St-co-MMA) microspheres were characterized and analyzed, and their performance was evaluated in laboratory tests. The results show that the crosslinked P (St-co-MMA) microspheres can significantly reduce the American Petroleum Institute (API) filtrate loss and permeability plugging apparatus (PPA) filtrate loss of polymer potassium chloride drilling fluid and effectively plug the micron pores of the formation. The foaming problem of drilling fluid is solved, and the rheological property of drilling fluid is less affected, which can meet the needs of wellbore stability of shale oil and gas formation.
[1] |
陈勉,金衍. 深井井壁稳定技术研究进展与发展趋势[J]. 石油钻探技术,2005,33(5):28–34.
CHEN Mian, JIN Yan. Advances and developmental trend of the wall stability technique[J]. Petroleum Drilling Techniques, 2005, 33(5): 28–34.
|
[2] |
邢希金,王涛,刘伟,等. 超深大位移井井壁稳定及储层保护技术与应用[J]. 中国海上油气,2023,35(5):154–163.
XING Xijin, WANG Tao, LIU Wei, et al. Research and application of drilling risk prevention and control measures in ultra-deep extended-reach wells[J]. China Offshore Oil and Gas, 2023, 35(5): 154–163.
|
[3] |
金衍,薄克浩,张亚洲,等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术,2023,51(4):159–169.
JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale[J]. Petroleum Drilling Techniques, 2023, 51(4): 159–169.
|
[4] |
赵峰,唐洪明,孟英峰,等. 微观地质特征对硬脆性泥页岩井壁稳定性影响与对策研究[J]. 钻采工艺,2007,30(6):16–18.
ZHAO Feng, TANG Hongming, MENG Yingfeng, et al. Study on the influence of microscopic geologic characteristics on wellbore stability of brittle shale[J]. Drilling & Production Technology, 2007, 30(6): 16–18.
|
[5] |
卢运虎,陈勉,安生. 页岩气井脆性页岩井壁裂缝扩展机理[J]. 石油钻探技术,2012,40(4):13–16.
LU Yunhu, CHEN Mian, AN Sheng. Brittle shale wellbore fracture propagation mechanism[J]. Petroleum Drilling Techniques, 2012, 40(4): 13–16.
|
[6] |
舒红林,刘臣,李志强,等. 昭通浅层页岩气压裂复杂裂缝扩展数值模拟研究[J]. 石油钻探技术,2023,51(6):77–84.
SHU Honglin, LIU Chen, LI Zhiqiang, et al. Numerical simulation of complex fracture propagation in shallow shale gas fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77–84.
|
[7] |
宋丽阳,王纪伟,刘长印,等. 低渗砂泥交互油藏压裂多裂缝扩展规律[J]. 断块油气田,2023,30(1):25–30.
SONG Liyang, WANG Jiwei, LIU Changyin, et al. Multi-fractures propagation law of low permeability sand shale interbed oil reservoirs fracturing[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 25–30.
|
[8] |
易良平,杨长鑫,杨兆中,等. 天然裂缝带对深层页岩压裂裂缝扩展的影响规律[J]. 天然气工业,2022,42(10):84–97.
YI Liangping, YANG Changxin, YANG Zhaozhong, et al. Influence of natural fracture zones on the propagation of hydraulic fractures in deep shale[J]. Natural Gas Industry, 2022, 42(10): 84–97.
|
[9] |
周忠亚. 纹层型页岩油储层裂缝扩展机理及工艺对策[J]. 特种油气藏,2023,30(6):141–149.
ZHOU Zhongya. Mechanism of fracture extension and process countermeasures in grain-type shale oil reservoirs[J]. Special Oil & Gas Reservoirs, 2023, 30(6): 141–149.
|
[10] |
郑斌,张金波,李先锋,等. 乳液聚合法合成钻井液用纳米级封堵剂研究[J]. 化工新型材料,2023,51(增刊2):507–510.
ZHENG Bin, ZHANG Jinbo, LI Xianfeng, et al. Study on synthesis of nanoscale plugging agent for drilling fluid by emulsion polymerization[J]. New Chemical Materials, 2023, 51(supplement 2): 507–510.
|
[11] |
李美春,孙金声,吕开河,等. 生物质基纳米材料在钻井液中的应用研究进展与展望[J]. 世界石油工业,2023,30(6):53–68.
LI Meichun, SUN Jinsheng, LYU Kaihe, et al. Research progress and prospect of biomass-based nanomaterials in drilling fluids[J]. World Petroleum Industry, 2023, 30(6): 53–68.
|
[12] |
刘建坤,蒋廷学,黄静,等. 纳米材料改善压裂液性能及驱油机理研究[J]. 石油钻探技术,2022,50(1):103–111.
LIU Jiankun, JIANG Tingxue, HUANG Jing, et al. Study on mechanism of the fracturing fluid performance improvement and oil displacement using nanomaterials[J]. Petroleum Drilling Techniques, 2022, 50(1): 103–111.
|
[13] |
黎然,刘玉娥,张军,等. 纳米封堵剂NanoZJS-1的合成与评价[J]. 石油化工,2021,50(9):934–939.
LI Ran, LIU Yu’e, ZHANG Jun, et al. Synthesis and evaluation of nano plugging agent NanoZJS-1[J]. Petrochemical Technology, 2021, 50(9): 934–939.
|
[14] |
卢震,黄贤斌,孙金声,等. 水基钻井液用耐高温纳米聚合物封堵剂的研制[J]. 石油钻采工艺,2020,42(5):587–591.
LU Zhen, HUANG Xianbin, SUN Jinsheng, et al. Development of the nano-polymer plugging agent with high temperature tolerance for water-based drilling fluid[J]. Oil Drilling & Production Technology, 2020, 42(5): 587–591.
|
[15] |
黄乘升,褚奇,李涛,等. 抗高温聚合物纳米微球封堵剂的合成与性能评价[J]. 钻井液与完井液,2022,39(2):139–145.
HUANG Chengsheng, CHU Qi, LI Tao, et al. The synthesis and evaluation of a high temperature nano micro-spherical polymer plugging agent[J]. Drilling Fluid & Completion Fluid, 2022, 39(2): 139–145.
|
[16] |
景岷嘉,曾婷,王江南. 聚合物纳米微球的制备及性能表征[J]. 精细石油化工进展,2020,21(4):18–22.
JING Minjia, ZENG Ting, WANG Jiangnan. Preparation and properties characterization of polymer nanospheres[J]. Advances in Fine Petrochemicals, 2020, 21(4): 18–22.
|
[17] |
陶怀志,陈俊斌,王兰,等. 聚合物纳米微球封堵剂CQ−NSA性能研究[J]. 钻采工艺,2022,45(2):115–119.
TAO Huaizhi, CHEN Junbin, WANG Lan, et al. Study on property of polymer nanoparticle blocking agent CQ−NSA[J]. Drilling & Production Technology, 2022, 45(2): 115–119.
|
[18] |
魏千盛,雷迅,庞强,等. 一种页岩地层环保型纳米封堵剂的研制及性能评价[J]. 当代化工,2022,51(1):65–68.
WEI Qiansheng, LEI Xun, PANG Qiang, et al. Development and performance evaluation of an environmentally friendly nano plugging agent for shale formation[J]. Contemporary Chemical Industry, 2022, 51(1): 65–68.
|
[19] |
滕春鸣,甄剑武,罗会义,等. 一种强吸附疏水改性纳米SiO2封堵剂[J]. 钻井液与完井液,2022,39(3):307–312.
TENG Chunming, ZHEN Jianwu, LUO Huiyi, et al. A strongly adsorptive hydrophobically modified nano SiO2 plugging agent[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 307–312.
|
[20] |
付旻皓,王平全,鲁劲松,等. 延长组长7段页岩水基钻井液封堵剂评价研究[J]. 西南石油大学学报(自然科学版),2023,45(5):173–182.
FU Minhao, WANG Pingquan, LU Jinsong, et al. Evaluation study of shale water-based drilling fluid plugging agent in Chang 7 Member of Yanchang Formation[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(5): 173–182.
|
[21] |
CAI J, CHENEVERT M E E, SHARMA M M, et al. Decreasing water invasion into Atoka shale using nonmodified silica nanoparticles[J]. SPE Drilling & Completion, 2012, 27(1): 103–112.
|
[22] |
宋晓峰,张德文. 乳液聚合法制备苯乙烯−甲基丙烯酸甲酯−丙烯酸三元共聚物[J]. 化工新型材料,2004,32(2):16–18.
SONG Xiaofeng, ZHANG Dewen. Preparation of styrene-methyl methacrylate-acrylic acid terpolymer with emulsion polymerization[J]. New Chemical Materials, 2004, 32(2): 16–18.
|
[23] |
张洪涛,林柳兰,尹朝辉. 苯乙烯-丙烯酸丁酯超浓乳液聚合的研究[J]. 高分子材料科学与工程,2001,17(1):43–46.
ZHANG Hongtao, LIN Liulan, YIN Zhaohui. Study of polymerization in St-BA concentrated emulsion[J]. Polymer Materials Science & Engineering, 2001, 17(1): 43–46.
|
[24] |
BON S A F, CAUVIN S, COLVER P J. Colloidosomes as micron-sized polymerisation vessels to create supracolloidal interpenetrating polymer network reinforced capsules[J]. Soft Matter, 2007, 3(2): 194–199. doi: 10.1039/B612066K
|
[25] |
CHEN T, COLVER P J, BON S A F. Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization[J]. Advanced Materials, 2007, 19(17): 2286–2289. doi: 10.1002/adma.200602447
|
[26] |
BEL HAAJ S, MAGNIN A, PÉTRIER C, et al. Starch nanoparticles formation via high power ultrasonication[J]. Carbohydrate Polymers, 2013, 92(2): 1625–1632. doi: 10.1016/j.carbpol.2012.11.022
|
[1] | CHEN Dongfang, QUAN Bing, XIAO Xinqi, ZHANG Guangyu, CHEN Zhihua. Structure Design and Laboratory Testings of an Axial & Torsional Coupling Impactor[J]. Petroleum Drilling Techniques, 2024, 52(1): 78-83. DOI: 10.11911/syztjs.2023104 |
[2] | TANG Ming, QI Xin, CAI Peng, WU Liugen. Development and Test of a MonoHole Expandable Casing System[J]. Petroleum Drilling Techniques, 2023, 51(1): 45-50. DOI: 10.11911/syztjs.2022030 |
[3] | YU Yan, GAO Rui, JIA Yudan, QIAO Lei, ZHOU Wei. Laboratory Tests on the Rock Breaking Effects of Plasma Torch and Suggestions for Field Application[J]. Petroleum Drilling Techniques, 2022, 50(4): 59-63. DOI: 10.11911/syztjs.2022034 |
[4] | SONG Xianzhi, LI Jiacheng, SHI Yu, XU Fuqiang, ZENG Yijin. Laboratory-Scale Experimental Study on the Injection-Production Performance of a Multilateral-Well Enhanced Geothermal System[J]. Petroleum Drilling Techniques, 2021, 49(1): 81-87. DOI: 10.11911/syztjs.2021019 |
[5] | SUN Haoyu, BO Peng, LI Zuohui, HUA Chenquan, ZHU Lietao, MA Jianpeng. Development and Function Test of an Intelligent Split-Control Switch for Separate-Layer Oil Production[J]. Petroleum Drilling Techniques, 2017, 45(4): 87-92. DOI: 10.11911/syztjs.201704015 |
[6] | FU Xuan, LI Gensheng, HUANG Zhongwei, CHI Huanpeng, LU Peiqing. Laboratory Testing and Productivity Numerical Simulation for Fracturing CBM Radial Horizontal Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 99-105. DOI: 10.11911/syztjs.201602017 |
[7] | Wang Zaiming, Zhu Kuanliang, Feng Jinghai, Wu Yan, Shen Yuanyuan. Development and Field Test of High-Temperature Gel Valve[J]. Petroleum Drilling Techniques, 2015, 43(4): 78-82. DOI: 10.11911/syztjs.201504014 |
[8] | Shi Jin, Li Peng, Jia Jianghong. Laboratory Testing of Sand Control Effect for Mesh Type Screen[J]. Petroleum Drilling Techniques, 2013, 41(3): 104-108. DOI: 10.3969/j.issn.1001-0890.2013.03.020 |
[9] | Yang Bin, Fang Yang, Wang Guozheng, Li Junping. Indoor Test of Heavy Oil Recovery by Gravity Drainage with Solvent[J]. Petroleum Drilling Techniques, 2012, 40(3): 102-106. DOI: 10.3969/j.issn.1001-0890.2012.03.021 |
[10] | Hydrogen Sulfide Corrosion of Metal Equipment in Oil and Gas Field[J]. Petroleum Drilling Techniques, 2011, 39(1): 32-35. DOI: 10.3969/j.issn.1001-0890.2011.01.007 |