Citation: | GUO Jianchun, ZHAO Feng, ZHAN Li, et al. Recent advances and development suggestions of temporary plugging and diverting fracturing technology for shale gas reservoirs in the Sichuan Basin [J]. Petroleum Drilling Techniques,2023, 51(4):170-183. DOI: 10.11911/syztjs.2023039 |
Temporary plugging and diverting fracturing technology is the key method for the efficient development of shale gas reservoirs in the Sichuan Basin. Current operations, however, still mainly rely on field experience. To further improve the effects of temporary plugging and diverting fracturing in this area, this paper summarizes the characteristics of shale reservoirs in the Sichuan Basin and reviews the application history of the temporary plugging and diverting fracturing technology. In addition, it presents the major progress of this technology in terms of temporary plugging materials, temporary plugging mechanisms, fracture diverting mechanisms, temporary plugging techniques, and field applications. Therefore, it clarifies the challenges faced by field operation and puts forth relevant development suggestions. Micro-seismic and field production data demonstrate that near-wellbore and far-field temporary plugging and diverting fracturing technologies significantly improve the fracturing stimulation effect of shale gas reservoirs in the Sichuan Basin. The main performance parameters of temporary plugging balls and particle temporary plugging agents commonly used in shale gas reservoirs meet the requirements of temporary plugging and diverting fracturing in the middle and shallow reservoirs and some deep reservoirs. Nevertheless, theoretical support is still lacking in the selection of temporary plugging materials and the optimization of operation parameters, and there are still challenges caused by the complex reservoir conditions of deep shale reservoirs. Work in the future should focus on enhancing the formulation of evaluation standards for temporary plugging materials, research on the temporary plugging mechanisms of various temporary plugging materials, and the development of new temporary plugging materials. In this way, theoretical references can be provided for the operation parameter optimization of temporary plugging and diverting fracturing, and the improvement in operation effects.
[1] |
梁兴,朱炬辉,石孝志,等. 缝内填砂暂堵分段体积压裂技术在页岩气水平井中的应用[J]. 天然气工业,2017,37(1):82–89.
LIANG Xing, ZHU Juhui, SHI Xiaozhi, et al. Staged fracturing of horizontal shale gas wells with temporary plugging by sand filling[J]. Natural Gas Industry, 2017, 37(1): 82–89.
|
[2] |
曹学军,王明贵,康杰,等. 四川盆地威荣区块深层页岩气水平井压裂改造工艺[J]. 天然气工业,2019,39(7):81–87.
CAO Xuejun, WANG Minggui, KANG Jie, et al. Fracturing technologies of deep shale gas horizontal wells in the Weirong Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(7): 81–87.
|
[3] |
臧传贞,姜汉桥,石善志,等. 基于射孔成像监测的多簇裂缝均匀起裂程度分析: 以准噶尔盆地玛湖凹陷致密砾岩为例[J]. 石油勘探与开发,2022,49(2):394–402. doi: 10.1016/S1876-3804(22)60033-8
ZANG Chuanzhen, JIANG Hanqiao, SHI Shanzhi, et al. An analysis of the uniformity of multi-fracture initiation based on downhole video imaging technology: a case study of Mahu tight conglomerate in Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(2): 394–402. doi: 10.1016/S1876-3804(22)60033-8
|
[4] |
CRAMER D, FRIEHAUF K, ROBERTS G, et al. Integrating DAS, treatment pressure analysis and video-based perforation imaging to evaluate limited entry treatment effectiveness[R]. SPE 194334, 2019.
|
[5] |
陈曦宇. 水平井分段多簇压裂多裂缝非均匀扩展现象数值模拟研究[D]. 成都: 西南石油大学, 2018.
CHEN Xiyu. Numerical investigation of non-uniform fracture growth in multi-stage hydraulic fracturing[D]. Chengdu: Southwest Petroleum University, 2018.
|
[6] |
HE Youwei, GUO Jianchun, TANG Yong, et al. Interwell fracturing interference evaluation of multi-well pads in shale gas reservoirs: a case study in WY Basin[R]. SPE 201694, 2020.
|
[7] |
郭建春,路千里,何佑伟. 页岩气压裂的几个关键问题与探索[J]. 天然气工业,2022,42(8):148–161.
GUO Jianchun, LU Qianli, HE Youwei. Key issues and explorations in shale gas fracturing[J]. Natural Gas Industry, 2022, 42(8): 148–161.
|
[8] |
郭彤楼,熊亮,雷炜,等. 四川盆地南部威荣、永川地区深层页岩气勘探开发进展、挑战与思考[J]. 天然气工业,2022,42(8):45–59.
GUO Tonglou, XIONG Liang, LEI Wei, et al. Deep shale gas exploration and development in the Weirong and Yongchuan areas, South Sichuan Basin: Progress, challenges and prospect[J]. Natural Gas Industry, 2022, 42(8): 45–59.
|
[9] |
王兴文,林永茂,缪尉杰. 川南深层页岩气体积压裂工艺技术[J]. 油气藏评价与开发,2021,11(1):102–108.
WANG Xingwen, LIN Yongmao, MIAO Weijie. Volume fracturing technology of deep shale gas in southern Sichuan[J]. Reservoir Evaluation and Development, 2021, 11(1): 102–108.
|
[10] |
周福建,袁立山,刘雄飞,等. 暂堵转向压裂关键技术与进展[J]. 石油科学通报,2022,7(3):365–381.
ZHOU Fujian, YUAN Lishan, LIU Xiongfei, et al. Advances and key techniques of temporary plugging and diverting fracturing[J]. Petroleum Science Bulletin, 2022, 7(3): 365–381.
|
[11] |
SCANLAN W P, PIERSKALLA K J, SOBERNHEIM D W, et al. Novel diversion case studies for improved near-wellbore connection between wellbore and hydraulic fracture[R]. URTEC 2881395, 2018.
|
[12] |
ZHANG Junjing, CRAMER D D, MCEWEN J, et al. Use of far-field diverters to mitigate parent-and infill-well-fracture interactions in shale formations[J]. SPE Production & Operations, 2020, 35(2): 272–291.
|
[13] |
郑有成,赵志恒,曾波,等. 川南长宁区块页岩气高密度完井+高强度加砂压裂探索与实践[J]. 钻采工艺,2021,44(2):43–48.
ZHENG Youcheng, ZHAO Zhiheng, ZENG Bo, et al. Exploration and practice on combination of high-density completion and high-intensity sand fracturing in shale gas horizontal well of Changning Block in southern Sichuan Basin[J]. Drilling & Production Technology, 2021, 44(2): 43–48.
|
[14] |
夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术,2020,48(3):90–96.
XIA Haibang. The research and field testing of dual temporary plugging fracturing technology for shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90–96.
|
[15] |
刘敏,康力,李明,等. 页岩气暂堵压裂技术在威远龙马溪组的应用[J]. 天然气技术与经济,2018,12(2):45–47.
LIU Min, KANG Li, LI Ming, et al. Application of temporary plugging fracturing to shale gas in Longmaxi Formation, Weiyuan Block, Sichuan Basin[J]. Natural Gas Technology and Economy, 2018, 12(2): 45–47.
|
[16] |
肖勇军,何先君,刘望,等. 裂缝暂堵−控藏体积压裂技术在长宁区块的应用[J]. 钻采工艺,2020,43(4):39–42. doi: 10.3969/J.ISSN.1006-768X.2020.04.11
XIAO Yongjun, HE Xianjun, LIU Wang, et al. Application of fracture temporary blocking-control reservoir volume fracturing in Changning Block[J]. Drilling & Production Technology, 2020, 43(4): 39–42. doi: 10.3969/J.ISSN.1006-768X.2020.04.11
|
[17] |
李彦超,张庆,沈建国,等. 页岩气藏长段多簇暂堵体积改造技术[J]. 天然气工业,2022,42(2):143–150. doi: 10.3787/j.issn.1000-0976.2022.02.015
LI Yanchao, ZHANG Qing, SHEN Jianguo, et al. Volumetric stimulation technology of long-section multi-cluster temporary plugging in shale gas reservoirs[J]. Natural Gas Industry, 2022, 42(2): 143–150. doi: 10.3787/j.issn.1000-0976.2022.02.015
|
[18] |
董大忠,高世葵,黄金亮,等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业,2014,34(12):1–15. doi: 10.3787/j.issn.1000-0976.2014.12.001
DONG Dazhong, GAO Shikui, HUANG Jinliang, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 1–15. doi: 10.3787/j.issn.1000-0976.2014.12.001
|
[19] |
马新华,谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发,2018,45(1):161–169.
MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161–169.
|
[20] |
何治亮,聂海宽,蒋廷学. 四川盆地深层页岩气规模有效开发面临的挑战与对策[J]. 油气藏评价与开发,2021,11(2):135–145.
HE Zhiliang, NIE Haikuan, JIANG Tingxue. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin[J]. Reservoir Evaluation and Development, 2021, 11(2): 135–145.
|
[21] |
何骁,陈更生,吴建发,等. 四川盆地南部地区深层页岩气勘探开发新进展与挑战[J]. 天然气工业,2022,42(8):24–34.
HE Xiao, CHEN Gengsheng, WU Jianfa, et al. Deep shale gas exploration and development in the southern Sichuan Basin: New progress and challenges[J]. Natural Gas Industry, 2022, 42(8): 24–34.
|
[22] |
邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1–14.
ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1–14.
|
[23] |
ZHOU Hongtao, WU Xiaotong, SONG Zongxiao, et al. A review on mechanism and adaptive materials of temporary plugging agent for chemical diverting fracturing[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110256. doi: 10.1016/j.petrol.2022.110256
|
[24] |
WANG Bo, ZHOU Fujian, YANG Chen, et al. Experimental study on injection pressure response and fracture geometry during temporary plugging and diverting fracturing[J]. SPE Journal, 2020, 25(2): 573–586. doi: 10.2118/199893-PA
|
[25] |
仝少凯,高德利. 水力压裂基础研究进展及发展建议[J]. 石油钻采工艺,2019,41(1):101–115. doi: 10.13639/j.odpt.2019.01.017
TONG Shaokai, GAO Deli. Basic research progress and development suggestions on hydraulic fracturing[J]. Oil Drilling & Production Technology, 2019, 41(1): 101–115. doi: 10.13639/j.odpt.2019.01.017
|
[26] |
曾凌翔,郑云川,蒲祖凤. 页岩重复压裂工艺技术研究及应用[J]. 钻采工艺,2020,43(1):65–68. doi: 10.3969/J.ISSN.1006-768X.2020.01.19
ZENG Lingxiang, ZHENG Yunchuan, PU Zufeng. Research and application of shale refracturing technology[J]. Drilling & Production Technology, 2020, 43(1): 65–68. doi: 10.3969/J.ISSN.1006-768X.2020.01.19
|
[27] |
赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年: 回顾与展望[J]. 天然气工业,2021,41(8):121–142.
ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121–142.
|
[28] |
李军龙,何昀宾,袁操,等. 页岩气藏水平井组“工厂化”压裂模式实践与探讨[J]. 钻采工艺,2017,40(1):47–50. doi: 10.3969/J.ISSN.1006-768X.2017.01.13
LI Junlong, HE Yunbin, YUAN Cao, et al. Practice and discussion of factory fracturing on horizontal shale-gas well pads[J]. Drilling & Production Technology, 2017, 40(1): 47–50. doi: 10.3969/J.ISSN.1006-768X.2017.01.13
|
[29] |
赵文智,贾爱林,位云生,等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探,2020,25(1):31–44. doi: 10.3969/j.issn.1672-7703.2020.01.004
ZHAO Wenzhi, JIA Ailin, WEI Yunsheng, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration, 2020, 25(1): 31–44. doi: 10.3969/j.issn.1672-7703.2020.01.004
|
[30] |
石岩. 国内第一口页岩气水平井威201-H1井完成11段压裂[J]. 施工企业管理,2011(8):119.
SHI Yan. Well Wei 201-H1, the first horizontal shale gas well in China, has completed 11 stages of fracturing[J]. Construction Enterprise Management, 2011(8): 119.
|
[31] |
焦瑞. 我国进行全球最先进页岩气“工厂化”作业[J]. 炼油技术与工程,2014(4):57.
JIAO Rui. Our country “factory” the most advanced shale gas operation in the world[J]. Petroleum Refinery Engineering, 2014(4): 57.
|
[32] |
张寻, 沈骋. 页岩气压裂工艺崛起之路: 川南页岩气压裂工艺2.0技术发展透视[N]. 中国石油报, 2022−02−10(4).
ZHANG Xun, SHEN Cheng. The way to rise of shale gas fracturing technology: perspective on the development of shale gas fracturing technology 2.0 in southern Sichuan[N]. China Petroleum Daily, 2022−02−10(04).
|
[33] |
童亨茂,张平,张宏祥,等. 页岩气水平井开发套管变形的地质力学机理及其防治对策[J]. 天然气工业,2021,41(1):189–197. doi: 10.3787/j.issn.1000-0976.2021.01.017
TONG Hengmao, ZHANG Ping, ZHANG Hongxiang, et al. Geomechanical mechanisms and prevention countermeasures of casing deformation in shale gas horizontal wells[J]. Natural Gas Industry, 2021, 41(1): 189–197. doi: 10.3787/j.issn.1000-0976.2021.01.017
|
[34] |
张平,何昀宾,刘子平,等. 页岩气水平井套管的剪压变形试验与套变预防实践[J]. 天然气工业,2021,41(5):84–91. doi: 10.3787/j.issn.1000-0976.2021.05.009
ZHANG Ping, HE Yunbin, LIU Ziping, et al. Shear compression deformation test and deformation prevention practice of casing in shale gas horizontal wells[J]. Natural Gas Industry, 2021, 41(5): 84–91. doi: 10.3787/j.issn.1000-0976.2021.05.009
|
[35] |
童亨茂,刘子平,张宏祥,等. 暂堵大裂缝防治页岩气水平井套管变形的理论与方法[J]. 天然气工业,2021,41(5):92–100. doi: 10.3787/j.issn.1000-0976.2021.05.010
TONG Hengmao, LIU Ziping, ZHANG Hongxiang, et al. Theory and method of temporary macrofracture plugging to prevent casing deformation in shale gas horizontal wells[J]. Natural Gas Industry, 2021, 41(5): 92–100. doi: 10.3787/j.issn.1000-0976.2021.05.010
|
[36] |
王兴文,刘琦,栗铁锋,等. 威荣页岩气田水平井套变段暂堵分段压裂工艺技术研究[J]. 钻采工艺,2021,44(6):55–58. doi: 10.3969/J.ISSN.1006-768X.2021.06.011
WANG Xingwen, LIU Qi, LI Tiefeng, et al. Research on temporary plugging fracturing technology in horizontal well with casing deformation in Weirong shale gas reservoir[J]. Drilling & Production Technology, 2021, 44(6): 55–58. doi: 10.3969/J.ISSN.1006-768X.2021.06.011
|
[37] |
陈浩. 威远页岩气套变水平井暂堵体积压裂技术适应性研究[J]. 数码设计,2019,8(2):45–48.
CHEN Hao. The research of temporarily plugging volume fracturing technology in casing deformation well of shale gas in Weiyuan[J]. Peak Data Science, 2019, 8(2): 45–48.
|
[38] |
杨毅,刘俊辰,曾波,等. 页岩气井套变段体积压裂技术应用及优选[J]. 石油机械,2017,45(12):82–87. doi: 10.16082/j.cnki.issn.1001-4578.2017.12.017
YANG Yi, LIU Junchen, ZENG Bo, et al. Application and optimization of SRV fracturing technology for casing deformation section of shale gas well[J]. China Petroleum Machinery, 2017, 45(12): 82–87. doi: 10.16082/j.cnki.issn.1001-4578.2017.12.017
|
[39] |
李凡华,董凯,付盼,等. 页岩气水平井大型体积压裂套损预测和控制方法[J]. 天然气工业,2019,39(4):69–75. doi: 10.3787/j.issn.1000-0976.2019.04.009
LI Fanhua, DONG Kai, FU Pan, et al. Prediction and control of casing damage in large volume fracturing of horizontal gas wells[J]. Natural Gas Industry, 2019, 39(4): 69–75. doi: 10.3787/j.issn.1000-0976.2019.04.009
|
[40] |
郭建春, 詹立, 路千里, 等. 暂堵颗粒在水力裂缝中的封堵行为特征[J/OL]. 石油勘探与开发: 1−7[2023−02−12]. http://kns.cnki.net/kcms/detail/11.2360.TE.20230201.0922.001.html.
GUO Jianchun, ZHAN Li, LU Qianli, et al. Plugging behaviors of temporary plugging particles in hydraulic fractures[J/OL]. Petroleum Exploration and Development: 1−7[2023−02−12]. http://kns.cnki.net/kcms/detail/11.2360.TE.20230201.0922.001.html.
|
[41] |
路智勇. 转向压裂用暂堵剂研究进展与展望[J]. 科学技术与工程,2020,20(31):12691–12701. doi: 10.3969/j.issn.1671-1815.2020.31.003
LU Zhiyong. Progress and prospect study on temporary plugging agent for diverting fracturing[J]. Science Technology and Engineering, 2020, 20(31): 12691–12701. doi: 10.3969/j.issn.1671-1815.2020.31.003
|
[42] |
肖沛瑶. 暂堵转向压裂技术用暂堵剂研究新进展[J]. 石油化工应用,2019,38(10):1–5. doi: 10.3969/j.issn.1673-5285.2019.10.001
XIAO Peiyao. Research of temporary plugging agent for temporary plugging diverting fracturing[J]. Petrochemical Industry Application, 2019, 38(10): 1–5. doi: 10.3969/j.issn.1673-5285.2019.10.001
|
[43] |
杜林麟, 张斌. 一种利用高强度可降解暂堵球的页岩气水平井压裂新方法: CN201810371161. X[P]. 2018−10−02.
DU Linlin, ZHANG Bin. A new fracturing method for shale gas horizontal Wells using high strength degradable temporary plugging balls: CN201810371161. X[P]. 2018−10−02.
|
[44] |
金智荣,包敏新,李升芳,等. 暂堵转向分层压裂工艺在薄互层油藏中的应用研究[J]. 复杂油气藏,2019,12(4):76–78. doi: 10.16181/j.cnki.fzyqc.2019.04.016
JIN Zhirong, BAO Minxin, LI Shengfang, et al. Application of temporary plugging and diversion separate layer fracturing in thin interbedded reservoirs[J]. Complex Hydrocarbon Reservoirs, 2019, 12(4): 76–78. doi: 10.16181/j.cnki.fzyqc.2019.04.016
|
[45] |
雷炜. 新型可溶金属孔眼暂堵球的研究及应用[J]. 钻采工艺,2020,43(3):73–75. doi: 10.3969/J.ISSN.1006-768X.2020.03.22
LEI Wei. Research and application of a new type of soluble metal ball for perforation plugging[J]. Drilling & Production Technology, 2020, 43(3): 73–75. doi: 10.3969/J.ISSN.1006-768X.2020.03.22
|
[46] |
宋世伟. 一种可降解聚合物复合凝胶暂堵球: CN202210074110.7[P]. 2022−04−26.
SONG Shiwei. The invention relates to a degradable polymer compound gel temporarily plugging the ball: CN202210074110.7[P]. 2022−04−26.
|
[47] |
李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45–57. doi: 10.3969/j.issn.1672-7703.2020.01.005
LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45–57. doi: 10.3969/j.issn.1672-7703.2020.01.005
|
[48] |
刘多容, 林永茂, 兰林, 等. 一种射孔炮眼暂堵用可溶降解暂堵球及其制备方法: CN201710881398.8[P]. 2018−01−12.
LIU Duorong, LIN Yongmao, LAN Lin, et al. The invention relates to a soluble degradable temporary plugging ball for perforation and a preparation method thereof: CN201710881398.8[P]. 2018−01−12.
|
[49] |
覃孝平,吴均,李翠霞,等. 压裂用水溶性暂堵剂的合成及性能 [J]. 石油化工,2020,49(9):898–904. doi: 10.3969/j.issn.1000-8144.2020.09.012
QIN Xiaoping, WU Jun, LI Cuixia, et al. Synthesis and performance of water-soluble temporary plugging agent for fracturing[J]. Petrochemical Technology, 2020, 49(9): 898–904. doi: 10.3969/j.issn.1000-8144.2020.09.012
|
[50] |
ZHU Daoyi, XU Zenghao, SUN Renxian, et al. Laboratory evaluation on temporary plugging performance of degradable preformed particle gels (DPPGs)[J]. Fuel, 2021, 289: 119743. doi: 10.1016/j.fuel.2020.119743
|
[51] |
许伟星,王玉功,周宾宾. 自降解水溶性暂堵剂的研究及应用[J]. 油田化学,2022,39(1):59–63.
XU Weixing, WANG Yugong, ZHOU Binbin. Research and application of self-degrading water-soluble temporary plugging agent[J]. Oilfield Chemistry, 2022, 39(1): 59–63.
|
[52] |
曾斌, 徐太平, 周京伟. 一种页岩气压裂克服高应力差暂堵转向用暂堵剂及其制备方法: CN201711330414.0[P]. 2020−12−29.
ZENG Bin, XU Taiping, ZHOU Jingwei. The utility model relates to a temporary plugging agent for shale gas fracturing to overcome high stress difference and a preparation method thereof: CN201711330414.0[P]. 2020−12 −29.
|
[53] |
张杨, 尚立涛. Any-Plug绳结暂堵剂提供暂堵增压定制解决方案[EB/OL]. (2022−03−08)[2023−02−12]. http://www.oilsns.com/article/486429.
ZHANG Yang, SHANG Litao. Any-plug provides customized solutions for temporary plugging and pressurization[EB/OL]. (2022−03−08) [2023−02−12]. http://www.oilsns.com/article/486429.
|
[54] |
BROWN R W, NEILL G H, LOPER R G. Factors influencing optimum ball sealer performance[J]. Journal of Petroleum Technology, 1963, 15(4): 450–454. doi: 10.2118/553-PA
|
[55] |
ERBSTOESSER S R. Improved ball sealer diversion[J]. Journal of Petroleum Technology, 1980, 32(11): 1903–1910. doi: 10.2118/8401-PA
|
[56] |
李勇明,翟锐,王文耀,等. 堵塞球分层压裂的投球设计与应用[J]. 石油地质与工程,2009,23(3):125–126. doi: 10.3969/j.issn.1673-8217.2009.03.042
LI Yongming, ZHAI Rui, WANG Wenyao, et al. The design and application of ball pitch in the stratified fracturing of plugging ball[J]. Petroleum Geology and Engineering, 2009, 23(3): 125–126. doi: 10.3969/j.issn.1673-8217.2009.03.042
|
[57] |
肖晖,李洁,曾俊. 投球压裂堵塞球运动方程研究[J]. 西南石油大学学报(自然科学版),2011,33(5):162–167.
XIAO Hui, LI Jie, ZENG Jun. Ball motion equation in the ball sealer fracturing[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2011, 33(5): 162–167.
|
[58] |
TAN Xuehao, WENG Xiaowei, AHMED T K, et al. An improved ball sealer model for well stimulation[R]. SPE 189573, 2018.
|
[59] |
方裕燕,冯炜,张雄,等. 炮眼暂堵室内实验研究[J]. 钻采工艺,2018,41(6):102–105. doi: 10.3969/J.ISSN.1006-768X.2018.06.29
FANG Yuyan, FENG Wei, ZHANG Xiong, et al. Experimental study on temporary plugging of perforations[J]. Drilling & Production Technology, 2018, 41(6): 102–105. doi: 10.3969/J.ISSN.1006-768X.2018.06.29
|
[60] |
陈钊, 王天一, 姜馨淳, 等. 页岩气水平井段内多簇压裂暂堵技术的数值模拟研究及先导实验[J]. 天然气工业, 2021, 41(增刊1): 158-163.
CHEN Zhao, WANG Tianyi, JIANG Xinchun, et al. Numerical simulation study and pilot test of multi-cluster fracturing and temporary plugging technology in the horizontal hole section of shale-gas horizontal wells[J]. Natural Gas Industry, 2021, 41(supplement 1): 158-163.
|
[61] |
张峰,荣莽,许明标. 页岩气水平井暂堵球运移坐封机理[J]. 科学技术与工程,2020,20(6):2202–2208. doi: 10.3969/j.issn.1671-1815.2020.06.013
ZHANG Feng, RONG Mang, XU Mingbiao. Mechanism of temporary blocking ball's transportation and blocking in shale gas horizontal wells[J]. Science Technology and Engineering, 2020, 20(6): 2202–2208. doi: 10.3969/j.issn.1671-1815.2020.06.013
|
[62] |
CHENG Wan, LU Chunhua, FENG Guanxiong, et al. Ball sealer tracking and seating of temporary plugging fracturing technology in the perforated casing of a horizontal well[J]. Energy Exploration & Exploitation, 2021, 39(6): 2045–2061.
|
[63] |
ABRAMS A. Mud design to minimize rock impairment due to particle invasion[J]. Journal of Petroleum Technology, 1977, 29(5): 586–592. doi: 10.2118/5713-PA
|
[64] |
HANDS N, KOWBEL K, MAIKRANZ S, et al. Drill-in fluid reduces formation damage, increases production rates[J]. Oil & Gas Journal, 1998, 96(28): 65–69.
|
[65] |
LYU Mingkun, QU Zhanqing, GUO Tiankui, et al. Experimental study on the transport law of different fracturing granular materials in fracture[J]. Energy & Fuels, 2022, 36(18): 10886–10898.
|
[66] |
LYU Bei, LANG Hao, LUO Yao, et al. Experimental study on settlement law of multi-particle compound temporary plugging material in rough fracture[J]. IOP Conference Series:Earth and Environmental Science, 2022, 984: 012010. doi: 10.1088/1755-1315/984/1/012010
|
[67] |
ZHU Baiyu, TANG Hongming, WANG Xi, et al. Coupled CFD-DEM simulation of granular LCM bridging in a fracture[J]. Particulate Science and Technology, 2020, 38(3): 371–380. doi: 10.1080/02726351.2018.1547341
|
[68] |
许成元,张敬逸,康毅力,等. 裂缝封堵层结构形成与演化机制[J]. 石油勘探与开发,2021,48(1):202–210. doi: 10.11698/PED.2021.01.19
XU Chengyuan, ZHANG Jingyi, KANG Yili, et al. Structural formation and evolution mechanisms of fracture plugging zone[J]. Petroleum Exploration and Development, 2021, 48(1): 202–210. doi: 10.11698/PED.2021.01.19
|
[69] |
LI Rui, LI Gao, FENG Yi, et al. Innovative experimental method for particle bridging behaviors in natural fractures[J]. Journal of Natural Gas Science and Engineering, 2022, 97: 104379. doi: 10.1016/j.jngse.2021.104379
|
[70] |
GOMAA A M, NINO-PENALOZA A, CASTILLO D, et al. Experimental investigation of particulate diverter used to enhance fracture complexity[R]. SPE 178983, 2016.
|
[71] |
XU Hualei, MA Yongle, JIANG Houshun, et al. Experimental study on particle-based temporary plugging material selection and diversion law of shale gas reservoirs in WY area, Sichuan, China[J]. Processes, 2022, 10(9): 1720. doi: 10.3390/pr10091720
|
[72] |
周彤,陈铭,张士诚,等. 非均匀应力场影响下的裂缝扩展模拟及投球暂堵优化[J]. 天然气工业,2020,40(3):82–91. doi: 10.3787/j.issn.1000-0976.2020.03.010
ZHOU Tong, CHEN Ming, ZHANG Shicheng, et al. Simulation of fracture propagation and optimization of ball-sealer in-stage diversion under the effect of heterogeneous stress field[J]. Natural Gas Industry, 2020, 40(3): 82–91. doi: 10.3787/j.issn.1000-0976.2020.03.010
|
[73] |
唐煊赫,朱海燕,车明光,等. 裂缝性页岩暂堵压裂复杂裂缝扩展模型与暂堵时机[J]. 石油勘探与开发,2023,50(1):139–151. doi: 10.11698/PED.20221011
TANG Xuanhe, ZHU Haiyan, CHE Mingguang, et al. Complex fracture propagation model and plugging timing optimization for temporary plugging fracturing in naturally fractured shale[J]. Petroleum Exploration and Development, 2023, 50(1): 139–151. doi: 10.11698/PED.20221011
|
[74] |
李奎东,刘炜,沈金才,等. 页岩气水平井投球暂堵压裂裂缝数模研究[J]. 天然气勘探与开发,2021,44(2):100–105.
LI Kuidong, LIU Wei, SHEN Jincai, et al. Numerical simulation on temporarily plugging the induced fractures with balls in shale-gas horizontal wells[J]. Natural Gas Exploration and Development, 2021, 44(2): 100–105.
|
[75] |
LI Jianxiong, DONG Shiming, HUA Wen, et al. Numerical simulation of temporarily plugging staged fracturing (TPSF) based on cohesive zone method[J]. Computers and Geotechnics, 2020, 121: 103453. doi: 10.1016/j.compgeo.2020.103453
|
[76] |
WANG Bo, ZHOU Fujian, ZOU Yushi, et al. Quantitative investigation of fracture interaction by evaluating fracture curvature during temporarily plugging staged fracturing[J]. Journal of Petroleum Science and Engineering, 2019, 172: 559–571. doi: 10.1016/j.petrol.2018.08.038
|
[77] |
胡东风,任岚,李真祥,等. 深层超深层页岩气水平井缝口暂堵压裂的裂缝调控模拟[J]. 天然气工业,2022,42(2):50–58. doi: 10.3787/j.issn.1000-0976.2022.02.006
HU Dongfeng, REN Lan, LI Zhenxiang, et al. Simulation of fracture control during fracture-opening temporary plugging fracturing of deep/ultra deep shale-gas horizontal wells[J]. Natural Gas Industry, 2022, 42(2): 50–58. doi: 10.3787/j.issn.1000-0976.2022.02.006
|
[78] |
岳迎春,郭建春. 重复压裂转向机制流−固耦合分析[J]. 岩土力学,2012,33(10):3189–3193. doi: 10.16285/j.rsm.2012.10.022
YUE Yingchun, GUO Jianchun. Fluid-solid coupling analysis of reorientation mechanism of refracturing[J]. Rock and Soil Mechanics, 2012, 33(10): 3189–3193. doi: 10.16285/j.rsm.2012.10.022
|
[79] |
WANG Bo, ZHOU Fujian, WANG Daobing, et al. Numerical simulation on near-wellbore temporary plugging and diverting during refracturing using XFEM-Based CZM[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 368–381. doi: 10.1016/j.jngse.2018.05.009
|
[80] |
王博,刘雄飞,胡佳,等. 缝内暂堵转向压裂数值模拟方法[J]. 石油科学通报,2021,6(2):262–271. doi: 10.3969/j.issn.2096-1693.2021.02.020
WANG Bo, LIU Xiongfei, HU Jia, et al. Numerical simulation of in-fracture temporary plugging and diverting fracturing (ITPDF)[J]. Petroleum Science Bulletin, 2021, 6(2): 262–271. doi: 10.3969/j.issn.2096-1693.2021.02.020
|
[81] |
王博. 暂堵压裂裂缝封堵与转向规律研究[D]. 北京: 中国石油大学(北京), 2019.
WANG Bo. Investigation of fracture plugging and diverting patterns in temporary plugging and diverting fracturing[D]. Beijing: China University of Petroleum(Beijing), 2019.
|
[82] |
SHI Shanzhi, CHENG Fushan, WANG Mingxing, et al. Hydrofracture plugging mechanisms and evaluation methods during temporary plugging and diverting fracturing[J]. Energy Science & Engineering, 2022, 10(3): 790–799.
|
[83] |
LI Minghui, ZHOU Fujian, LIU Jinjun, et al. Quantitative investigation of multi-fracture morphology during TPDF through true tri-axial fracturing experiments and CT scanning[J]. Petroleum Science, 2022, 19(4): 1700–1717. doi: 10.1016/j.petsci.2022.03.017
|
[84] |
LI Minghui, ZHOU Fujian, SUN Zhonghua, et al. Experimental study on plugging performance and diverted fracture geometry during different temporary plugging and diverting fracturing in Jimusar shale[J]. Journal of Petroleum Science and Engineering, 2022, 215(Part A): 110580.
|
[85] |
ZHANG Ruxin, HOU Bing, TAN Peng, et al. Hydraulic fracture propagation behavior and diversion characteristic in shale formation by temporary plugging fracturing[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107063. doi: 10.1016/j.petrol.2020.107063
|
[86] |
LU Cong, LUO Yang, LI Junfeng, et al. Numerical analysis of complex fracture propagation under temporary plugging conditions in a naturally fractured reservoir[J]. SPE Production & Operations, 2020, 35(4): 0775–0796.
|
[87] |
WANG Daobing, DONG Yongcun, SUN Dongliang, et al. A three-dimensional numerical study of hydraulic fracturing with degradable diverting materials via CZM-based FEM[J]. Engineering Fracture Mechanics, 2020, 237: 107251. doi: 10.1016/j.engfracmech.2020.107251
|
[88] |
ZOU Yushi, MA Xinfang, ZHANG Shicheng. Numerical modeling of fracture propagation during temporary-plugging fracturing[J]. SPE Journal, 2020, 25(3): 1503–1522. doi: 10.2118/199351-PA
|
[89] |
LUO Bo, WONG G K, HAN Yanhui. Modeling of dynamic bridging of solid particles in multiple propagating fractures[J]. International Journal of Solids and Structures, 2023, 262/263: 112078. doi: 10.1016/j.ijsolstr.2022.112078
|
[90] |
GUO Jianchun, ZHAO Xing, ZHU Haiyan, et al. Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 180–188. doi: 10.1016/j.jngse.2015.05.008
|
[91] |
CADOTTE R J, WHITSETT A, SORRELL M, et al. Modern completion optimization in the Haynesville Shale[R]. SPE 187315, 2017.
|
[92] |
RICHTER K. Midland Basin Wolfcamp Shale: completions observations and lateral length optimization[R]. URTEC 2665631, 2017.
|
[93] |
赵志恒,郑有成,范宇,等. 页岩储集层水平井段内多簇压裂技术应用现状及认识[J]. 新疆石油地质,2020,41(4):499–504.
ZHAO Zhiheng, ZHENG Youcheng, FAN Yu, et al. Application and cognition of multi-cluster fracturing technology in horizontal wells in shale reservoirs[J]. Xinjiang Petroleum Geology, 2020, 41(4): 499–504.
|
[94] |
BARRAZA J, CAPDEROU C, JONES M C, et al. Increased cluster efficiency and fracture network complexity using degradable diverter particulates to increase production: Permian Basin Wolfcamp Shale case study[R]. SPE 187218, 2017.
|
1. |
薛佺,郭永鑫,庞勇. 基于嵌入式单片机桥式同心分层注水一体化测调监测研究. 粘接. 2024(01): 165-168 .
![]() | |
2. |
平恩顺,张明晰,王瑞泓,王永亮,赵磊,李路遥,张京宝. 跨采油树不动管柱酸压增注技术研究. 钻采工艺. 2023(02): 122-125 .
![]() | |
3. |
魏军. 基于超声波反射法的油田注水井管柱腐蚀识别. 无损检测. 2023(10): 59-63+77 .
![]() | |
4. |
赵广渊,王天慧,杨树坤,李翔,吕国胜,杜晓霞. 渤海油田液压控制智能分注优化关键技术. 石油钻探技术. 2022(01): 76-81 .
![]() | |
5. |
孙敏. 分层注水压力控制驱油效果实验研究. 化学工程师. 2022(08): 59-62 .
![]() | |
6. |
曹力元. 苏北油田CO_2驱油同心双管分层注气技术. 石油钻探技术. 2022(04): 109-113 .
![]() | |
7. |
严梁柱,方琼瑶. 螺杆驱动滑套式低频脉冲注水工具设计. 液压气动与密封. 2022(10): 59-64 .
![]() | |
8. |
张玉梅. 锚定补偿式分层注水管柱的改进及应用. 中外能源. 2022(10): 52-56 .
![]() |