Citation: | HU Qingfu, LIU Chunlai, MU Shaomin, et al. High-efficiency anti-sloughing drilling fluid technology for Tanuma shale of East Baghdad Oilfield in Iraq [J]. Petroleum Drilling Techniques,2022, 50(4):76-82. DOI: 10.11911/syztjs.2022081 |
East Baghdad Oilfield in Iraq employs horizontal wells to develop reservoirs of the Khasib Formation in the South-2 block. However, in the drilling of the first horizontal well in the block with the Khasib Formation as the target, repeated sloughing and sticking happened drilling through the shale formation of Tanuma, which resulted in borehole abandonment. Researches on formation mineral composition, pore-fracture development, and hydration swelling characteristics show that the Tanuma shale features high clay mineral content, strong water sensitivity, evident macro bedding development, high micro pore and fracture development, and fast hydration swelling rate. As a result, wellbore instability occurs due to the rapid hydration swelling of clay minerals during drilling. Through laboratory evaluation, a high-efficiency anti-sloughing drilling fluid system was developed, by selecting N-Seal plugging agent and U-HIB inhibitor and optimizing the formula of the KCl/polysulfonate drilling fluid system. The evaluation demonstrated that the drilling fluid system with good rheologic characteristics presented strong plugging and inhibition performances, which met the requirements of high-efficiency plugging of Tanuma shale. In field tests of the drilling fluid in three horizontal wells of the South-2 block, Tanuma shale was drilled through without any wellbore instability issues. Laboratory evaluation and field tests show that the application of proposed drilling fluid system can effectively eliminate the technical difficulties of borehole instability in drilling through Tanuma shale, and provide support for the effective development of reservoirs in the Khasib Formation.
[1] |
程远方,张锋,王京印,等. 泥页岩井壁坍塌周期分析[J]. 中国石油大学学报(自然科学版),2007,31(1):63–66.
CHENG Yuanfang, ZHANG Feng, WANG Jingyin, et al. Analysis of borehole collapse cycling time for shale[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(1): 63–66.
|
[2] |
南旭. 关于页岩气井井壁失稳机理及其油基钻井液技术探究[J]. 化工管理,2020(17):96–97.
NAN Xu. Study on wellbore instability mechanism of shale gas well and oil based drilling fluid technology[J]. Chemical Management, 2020(17): 96–97.
|
[3] |
袁华玉,程远方,王伟,等. 长水平段钻井泥岩井壁坍塌周期分析[J]. 科学技术与工程,2017,17(3):183–189. doi: 10.3969/j.issn.1671-1815.2017.03.028
YUAN Huayu, CHENG Yuanfang, WANG Wei, et al. Analysis on time-dependent wellbore collapse for long horizontal well in shale formation[J]. Science Technology and Engineering, 2017, 17(3): 183–189. doi: 10.3969/j.issn.1671-1815.2017.03.028
|
[4] |
李辉. 白油基油包水钻井液在JHW00421井水平段的应用[J]. 新疆石油天然气,2020,16(2):38–42. doi: 10.3969/j.issn.1673-2677.2020.02.009
LI Hui. The application of invert white oil based drilling fluid in horizontal section of Well JHW00421[J]. Xinjiang Oil & Gas, 2020, 16(2): 38–42. doi: 10.3969/j.issn.1673-2677.2020.02.009
|
[5] |
SY/T 5163—2018 沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法[S].
SY/T 5163—2018 Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction[S].
|
[6] |
王倩,王刚,蒋宏伟,等. 泥页岩井壁稳定耦合研究[J]. 断块油气田,2012,19(4):517–521.
WANG Qian, WANG Gang, JIANG Hongwei, et al. Study on shale wellbore stability coupling[J]. Fault-Block Oil & Gas Field, 2012, 19(4): 517–521.
|
[7] |
张伟国,狄明利,卢运虎,等. 南海西江油田古近系泥页岩地层防塌钻井液技术[J]. 石油钻探技术,2019,47(6):40–47.
ZHANG Weiguo, DI Mingli, LU Yunhu, et al. Anti-sloughing drilling fluid technology for the Paleogene shale stratum of the Xijiang Oilfield in the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 40–47.
|
[8] |
梁利喜,丁乙,刘向君,等. 硬脆性泥页岩井壁稳定渗流–力化耦合研究[J]. 特种油气藏,2016,23(2):140–143.
LIANG Lixi, DING Yi, LIU Xiangjun, et al. Seepage-mechanochemistry coupling of wellbore stability in hard-brittle shale[J]. Special Oil & Gas Reservoirs, 2016, 23(2): 140–143.
|
[9] |
蔚宝华,邓金根,闫伟. 层理性泥页岩地层井壁坍塌控制方法研究[J]. 石油钻探技术,2010,38(1):56–59.
YU Baohua, DENG Jingen, YAN Wei. Borehole sloughing control in shale formations[J]. Petroleum Drilling Techniques, 2010, 38(1): 56–59.
|
[10] |
姚新珠,时天钟,于兴东,等. 泥页岩井壁失稳原因及对策分析[J]. 钻井液与完井液,2001,18(3):38–41.
YAO Xinzhu, SHI Tianzhong, YU Xingdong, et al. Shale wellbore failure and precautionary measures[J]. Drilling Fluid & Completion Fluid, 2001, 18(3): 38–41.
|
[11] |
樊泽霞,高锦屏,郭东荣. 泥页岩水化作用综合评价[J]. 石油钻探技术,1999,27(6):26–27.
FAN Zexia, GAO Jinping, GUO Dongrong. Comprehensive evaluation of mud shale hydration[J]. Petroleum Drilling Techniques, 1999, 27(6): 26–27.
|
[12] |
SY/T 5162—1997 岩石样品扫描电子显微镜分析方法[S].
SY/T 5162—1997 Analytical method of rock sample by scanning electron microscope[S].
|
[13] |
王建华,鄢捷年,苏山林. 硬脆性泥页岩井壁稳定评价新方法[J]. 石油钻采工艺,2006,28(2):28–30. doi: 10.3969/j.issn.1000-7393.2006.02.009
WANG Jianhua, YAN Jienian, SU Shanlin. New method for evaluating borehole stability in brittle shale[J]. Oil Drilling & Production Technology, 2006, 28(2): 28–30. doi: 10.3969/j.issn.1000-7393.2006.02.009
|
[14] |
刘厚彬,韩旭,张俊,等. 川西低渗透气藏气体钻井井壁稳定性评价方法[J]. 石油钻探技术,2019,47(1):25–31. doi: 10.11911/syztjs.2019004
LIU Houbin, HAN Xu, ZHANG Jun, et al. Wellbore stability evaluation during gas drilling through low permeability gas reservoirs in Western Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(1): 25–31. doi: 10.11911/syztjs.2019004
|
[15] |
丁乙,梁利喜,刘向君,等. 温度和化学耦合作用对泥页岩地层井壁稳定性的影响[J]. 断块油气田,2016,23(5):663–667. doi: 10.6056/dkyqt201605027
DING Yi, LIANG Lixi, LIU Xiangjun, et al. Influence of temperature and chemical on wellbore stability in clay shale formation[J]. Fault-Block Oil & Gas Field, 2016, 23(5): 663–667. doi: 10.6056/dkyqt201605027
|
[16] |
邓媛,何世明,邓祥华,等. 力化耦合作用下的层理性页岩气水平井井壁失稳研究[J]. 石油钻探技术,2020,48(1):26–33. doi: 10.11911/syztjs.2020010
DENG Yuan, HE Shiming, DENG Xianghua, et al. Study on wellbore instability of bedded shale gas horizontal wells under chemo-mechanical coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26–33. doi: 10.11911/syztjs.2020010
|
[17] |
燕松兵,刘付臣,杨振周,等. 大庆致密油井页岩井壁稳定性实验研究[J]. 钻井液与完井液,2020,37(2):140–147. doi: 10.3969/j.issn.1001-5620.2020.02.002
YAN Songbing, LIU Fuchen, YANG Zhenzhou, et al. Experimentalstudy on shale borehole wall stability of tight oil wells in Daqing Oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 140–147. doi: 10.3969/j.issn.1001-5620.2020.02.002
|
[18] |
赵凯,樊勇杰,于波,等. 硬脆性泥页岩井壁稳定研究进展[J]. 石油钻采工艺,2016,38(3):277–285. doi: 10.13639/j.odpt.2016.03.001
ZHAO Kai, FAN Yongjie, YU Bo, et al. Research progress of wellbore stability in hard brittle shale[J]. Oil Drilling & Production Technology, 2016, 38(3): 277–285. doi: 10.13639/j.odpt.2016.03.001
|
[19] |
刘厚彬,崔帅,孟英峰,等. 深层脆性页岩水平井井壁崩落失稳研究[J]. 断块油气田,2021,28(3):323–328.
LIU Houbin, CUI Shuai, MENG Yingfeng, et al. Study on wellbore caving and instability of horizontal well in deep brittle shale[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 323–328.
|
[20] |
韩正波,刘厚彬,张靖涛,等. 深层脆性页岩力学性能及井壁稳定性研究[J]. 特种油气藏,2020,27(5):167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026
HAN Zhengbo, LIU Houbin, ZHANG Jingtao, et al. Research on the mechanical properties and borehole stability of deep brittle shale[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026
|
[21] |
SY/T 5613—2000 泥页岩理化性能试验方法[S].
SY/T 5613—2000 Methods for testing shale physics and chemistry properties[S].
|
[22] |
金军斌. 塔里木盆地顺北区块超深井火成岩钻井液技术[J]. 石油钻探技术,2016,44(6):17–23. doi: 10.11911/syztjs.201606003
JIN Junbin. Drilling fluid technology for igneous rocks in ultra-deep wells in the Shunbei Area, Tarim Basin[J]. Petroleum Drilling Techniques, 2016, 44(6): 17–23. doi: 10.11911/syztjs.201606003
|
[23] |
黄维安,牛晓,沈青云,等. 塔河油田深侧钻井防塌钻井液技术[J]. 石油钻探技术,2016,44(2):51–57. doi: 10.11911/syztjs.201602009
HUANG Weian, NIU Xiao, SHEN Qingyun, et al. Anti-sloughing drilling fluid technology for deep sidetracking wells in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(2): 51–57. doi: 10.11911/syztjs.201602009
|
[24] |
刘锋报,邵海波,周志世,等. 哈拉哈塘油田硬脆性泥页岩井壁失稳机理及对策[J]. 钻井液与完井液,2015,32(1):38–41. doi: 10.3969/j.issn.1001-5620.2015.01.10
LIU Fengbao, SHAO Haibo, ZHOU Zhishi, et al. Mechanism and strategy to deal with borehole instability of hard and brittle shales in Halahatang Oilfield[J]. Drilling Fluid & Completion Fluid, 2015, 32(1): 38–41. doi: 10.3969/j.issn.1001-5620.2015.01.10
|
[25] |
陈修平,李双贵,于洋,等. 顺北油气田碳酸盐岩破碎性地层防塌钻井液技术[J]. 石油钻探技术,2020,48(2):12–16. doi: 10.11911/syztjs.2020005
CHEN Xiuping, LI Shuanggui, YU Yang, et al. Anti-collapse drilling fluid technology for broken carbonate formation in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 12–16. doi: 10.11911/syztjs.2020005
|
[26] |
林常茂,张永青,刘超,等. 新型井壁稳定剂DLF-50的研制与应用[J]. 钻井液与完井液,2015,32(4):17–20. doi: 10.3969/j.issn.1001-5620.2015.04.005
LIN Changmao, ZHANG Yongqing, LIU Chao, et al. Development and application of the new shale stabilizer DLF-50[J]. Drilling Fluid & Completion Fluid, 2015, 32(4): 17–20. doi: 10.3969/j.issn.1001-5620.2015.04.005
|
[27] |
卢震,黄贤斌,孙金声,等. 水基钻井液用耐高温纳米聚合物封堵剂的研制[J]. 石油钻采工艺,2020,42(5):587–591. doi: 10.13639/j.odpt.2020.05.011
LU Zhen, HUANG Xianbin, SUN Jinsheng, et al. Development of the nano-polymer plugging agent with high temperature tolerance for water-based drilling fluid[J]. Oil Drilling & Production Technology, 2020, 42(5): 587–591. doi: 10.13639/j.odpt.2020.05.011
|
[28] |
廖奉武,李坤豫,胡靖,等. 钻井液封堵剂高温高压封堵性能评价方法[J]. 科学技术与工程,2019,19(29):90–95. doi: 10.3969/j.issn.1671-1815.2019.29.015
LIAO Fengwu, LI Kunyu, HU Jing, et al. Evaluation method for HTHP plugging property of drilling fluid plugging agent[J]. Science Technology and Engineering, 2019, 19(29): 90–95. doi: 10.3969/j.issn.1671-1815.2019.29.015
|
[29] |
林永学,甄剑武. 威远区块深层页岩气水平井水基钻井液技术[J]. 石油钻探技术,2019,47(2):21–27. doi: 10.11911/syztjs.2019022
LIN Yongxue, ZHEN Jianwu. Water based drilling fluid technology for deep shale gas horizontal wells in Block Weiyuan[J]. Petroleum Drilling Techniques, 2019, 47(2): 21–27. doi: 10.11911/syztjs.2019022
|
1. |
王旭锋,牛志军,张磊,李翔宇,王纪尧,常泽超,陈旭阳. 超声振动在矿山煤岩致裂中的研究进展与展望. 煤炭科学技术. 2024(01): 232-243 .
![]() | |
2. |
杨小聪,黄丹,岳小磊,王想. 非煤矿山机械连续采矿技术研究进展与发展趋势. 有色金属(矿山部分). 2024(06): 1-24 .
![]() | |
3. |
向玲,王成东,周政. 硬岩地基基础快速成桩技术的研究进展. 城市建设理论研究(电子版). 2024(32): 117-119 .
![]() | |
4. |
黄继庆,胡海,樊思成,刘伟吉,祝效华. 基于扩展PFC2D-GBM模型的单齿切削花岗岩破碎机制. 中国石油大学学报(自然科学版). 2023(02): 81-89 .
![]() | |
5. |
刘伟吉,张有建,祝效华,胡海,何灵,陈梦秋. 影响高压电脉冲破岩效率的关键因素分析. 天然气工业. 2023(10): 112-124 .
![]() | |
6. |
齐悦,柳贡慧,李军,查春青,田玉栋,李玉梅. 基于单齿多维度冲击破岩机理仿真研究. 石油机械. 2023(12): 1-7 .
![]() | |
7. |
王少锋,孙立成,周子龙,吴毓萌,石鑫垒. 非爆破岩理论和技术发展与展望. 中国有色金属学报. 2022(12): 3883-3912 .
![]() | |
8. |
赵研,张丛珊,高科,张增增,赵大军,李家晟,吕晓姝,平天才. 超声波辅助PDC切削齿振动破岩仿真分析. 钻探工程. 2021(04): 11-20 .
![]() | |
9. |
路宗羽,郑珺升,蒋振新,赵飞. 超声波高频旋冲钻井技术破岩效果试验研究. 石油钻探技术. 2021(02): 20-25 .
![]() | |
10. |
李鹏,蔡美峰. 深部金属矿产资源开发面临的挑战及新见解(英文). Transactions of Nonferrous Metals Society of China. 2021(11): 3478-3505 .
![]() | |
11. |
聂佳辉,吴志鑫,雷磊,郑靖,周仲荣. TBM的刀具改性与辅助破岩技术研究现状. 机械. 2021(12): 1-10+19 .
![]() | |
12. |
王海军,郁舒阳,李汉章,任然,汤雷,朱文炜. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究. 岩石力学与工程学报. 2020(05): 938-948 .
![]() | |
13. |
徐梓辰,金衍,腾学清. 液压式应力波辅助破岩工具设计及实验研究. 机床与液压. 2020(19): 1-7 .
![]() | |
14. |
刘春生,韩德亮,那洪亮. 碟盘振动切削煤岩机构的动力学模型与幅频特性. 黑龙江科技大学学报. 2020(05): 499-504 .
![]() | |
15. |
李玉梅,张涛,苏中,于丽维,刘建明. 复合冲击频率配合特性模拟研究. 石油机械. 2019(09): 30-36 .
![]() | |
16. |
索忠伟. ?228.6mm射流冲击器研制及硬地层提速试验. 石油钻探技术. 2019(04): 54-58 .
![]() | |
17. |
李玉梅,于丽维,张涛,苏中,刘建明. 复合冲击钻井立体破岩特性模拟研究. 系统仿真学报. 2019(11): 2471-2476 .
![]() |