LIN Siyuan, ZHANG Jie, HAN Cheng, HU Jie, TIAN Zongqiang, ZHENG Haopeng. Key Technology for Horizontal Well of Extended Reach Drilling in the Shallow Reservoirs of the Dongfang Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(5): 17-21. DOI: 10.11911/syztjs.2019105
Citation: LIN Siyuan, ZHANG Jie, HAN Cheng, HU Jie, TIAN Zongqiang, ZHENG Haopeng. Key Technology for Horizontal Well of Extended Reach Drilling in the Shallow Reservoirs of the Dongfang Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(5): 17-21. DOI: 10.11911/syztjs.2019105

Key Technology for Horizontal Well of Extended Reach Drilling in the Shallow Reservoirs of the Dongfang Gas Field

More Information
  • Received Date: February 12, 2019
  • Revised Date: August 15, 2019
  • Available Online: August 25, 2019
  • While drilling horizontal wells having extended reach in the shallow reservoirs of Dongfang Gas Field in the Western South China Sea, challenges were encountered. They included balling-proneness in the shallow mudstone interval, lost circulation induced reservoir damage in the unconsolidated target layer, large frictional drag in RIH technical casing and narrow cementing pressure safety window. These factors contributed to the dual-risk of lost circulation and gas channeling. Combining with the previous regional operation experiences and optimizing the drilling fluid technical solution and compounding the pertinent additives, the first problem of debris balling in the shallow mudstone interval was solved, improved reservoir protection effect. Using floating coupling technology ensured smooth RIH of technical casing. After optimizing the mud column structure, the new cementing formula and casing centralization improved cementing quality. Key technologies for horizontal well of extended reach drilling in the shallow reservoirs of Dongfang Gas Field were developed. These technologies have achieved a good application effect during drilling the horizontal wells of extended reach in the shallow reservoirs of Dongfang Gas Field. No mud ball was formed during the shallow mudstone interval drilling of well DF-AH, and no lost circulation occurred in the target layer. The technical casing RIH was finished smoothly, and the completion/cleanup productivity was about 50% higher than the designed. Those key technologies have provided technical supports for the efficient development of gas fields.

  • [1]
    刘云, 王涛, 于小龙, 等. 延长油田西部地区低压易漏地层固井技术[J]. 石油钻探技术, 2017, 45(4): 53–58.

    LIU Yun, WANG Tao, YU Xiaolong, et al. Cementation technology for low-pressure formations susceptible to lost circulation in western area of the Yanchang Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(4): 53–58.
    [2]
    程玉生, 杨洪烈, 胡文军, 等. 乐东22-1气田超浅层大位移井钻井液技术[J]. 石油天然气学报, 2014, 36(12): 146–148. doi: 10.3969/j.issn.1000-9752.2014.12.035

    CHENG Yusheng, YANG Honglie, HU Wenjun, et al. Ultra-shallow extended reach well drilling fluid technology in Ledong 22-1 Gas Field[J]. Journal of Oil and Gas Technology, 2014, 36(12): 146–148. doi: 10.3969/j.issn.1000-9752.2014.12.035
    [3]
    田宗强, 韦龙贵, 韩成, 等. 东方1-1气田浅层大位移水平井钻井液优化与实践[J]. 石油钻采工艺, 2017, 39(6): 713–718.

    TIAN Zongqiang, WEI Longgui, HAN Cheng, et al. Optimization and application of drilling fluid in the shallow extended-reach horizontal well in Dongfang 1-1 Gasfield[J]. Oil Drilling & Production Technology, 2017, 39(6): 713–718.
    [4]
    崔应中, 徐一龙, 黄凯文, 等. 东方1-1气田水基钻井液技术优化[J]. 钻井液与完井液, 2016, 33(4): 65–68.

    CUI Yingzhong, XU Yilong, HUANG Kaiwen, et al. Optimization of water based drilling fluid technology for Dongfang 1-1 Gas Field[J]. Drilling Fluid & Completion Fluid, 2016, 33(4): 65–68.
    [5]
    车伟林, 张立权, 杨洪烈, 等. 南海西部浅层大位移井钻井液技术[J]. 广东化工, 2014, 41(22): 45–46, 48. doi: 10.3969/j.issn.1007-1865.2014.22.021

    CHE Weilin, ZHANG Liquan, YANG Honglie, et al. The technology of shallow highly-displacement well drilling fluid in the South China Sea[J]. Guangdong Chemical Industry, 2014, 41(22): 45–46, 48. doi: 10.3969/j.issn.1007-1865.2014.22.021
    [6]
    田宗强, 鹿传世, 王成龙, 等. 东方1-1气田浅层大位移水平井钻井技术[J]. 石油钻采工艺, 2018, 40(2): 157–163.

    TIAN Zongqiang, LU Chuanshi, WANG Chenglong, et al. The extended reach horizontal well drilling technology suitable for shallow layers in Dongfang 1-1 Gas Field[J]. Oil Drilling & Production Technology, 2018, 40(2): 157–163.
    [7]
    蒲晓林, 梁大川, 王平全, 等. 抑制钻屑形成泥球的钻井液研究[J]. 西南石油学院学报, 2002, 24(2): 46–49. doi: 10.3863/j.issn.1674-5086.2002.02.015

    PU Xiaolin, LIANG Dachuan, WANG Pingquan, et al. Study on drilling fluids of inhibiting formation of mud balls by rock cuttings[J]. Journal of Southwest Petroleum Institute, 2002, 24(2): 46–49. doi: 10.3863/j.issn.1674-5086.2002.02.015
    [8]
    张岩, 向兴金, 鄢捷年, 等. 快速钻井中泥球形成的影响因素与控制措施[J]. 中国海上油气, 2011, 23(5): 335–339. doi: 10.3969/j.issn.1673-1506.2011.05.012

    ZHANG Yan, XIANG Xingjin, YAN Jienian, et al. Influence factors and controlling measures on formation of gumbo balls during fast drilling[J]. China Offshore Oil and Gas, 2011, 23(5): 335–339. doi: 10.3969/j.issn.1673-1506.2011.05.012
    [9]
    耿学礼, 苏延辉, 郑晓斌, 等. 无固相保护煤层钻井液研究及应用[J]. 石油钻采工艺, 2017, 39(4): 455–459.

    GENG Xueli, SU Yanhui, ZHENG Xiaobin, et al. Study and application of solid-free coalbed protection drilling fluid[J]. Oil Drilling & Production Technology, 2017, 39(4): 455–459.
    [10]
    鄢捷年, 杨虎, 王利国. 南海流花大位移井水基钻井液技术[J]. 石油钻采工艺, 2006, 28(1): 23–28. doi: 10.3969/j.issn.1000-7393.2006.01.007

    YAN Jienian, YANG Hu, WANG Liguo. Technology of water based drilling fluids used in extended reach wells at Liuhua Field[J]. Oil Drilling & Production Technology, 2006, 28(1): 23–28. doi: 10.3969/j.issn.1000-7393.2006.01.007
    [11]
    向雄, 杨洪烈, 刘喜亮, 等. 南海西部超浅层气田水平井EZFLOW无固相弱凝胶钻井液研究与应用[J]. 石油钻探技术, 2018, 46(2): 38–43.

    XIANG Xiong, YANG Honglie, LIU Xiliang, et al. Research and application of EZFLOW solid-free weak gel drilling fluid in horizontal wells in shallow gas fields in the Western South China Sea[J]. Petroleum Drilling Techniques, 2018, 46(2): 38–43.
    [12]
    滕学清, 康毅力, 张震, 等. 塔里木盆地深层中-高渗砂岩储层钻井完井损害评价[J]. 石油钻探技术, 2018, 46(1): 37–43.

    TENG Xueqing, KANG Yili, ZHANG Zhen, et al. Evaluation of drilling and completion damage in deep medium-to-high permeability sandstone reservoir in Tarim Basin[J]. Petroleum Drilling Techniques, 2018, 46(1): 37–43.
    [13]
    王攀, 袁广涛. 悬浮下套管减载计算及因素分析: 以某气田水平井为例[J]. 非常规油气, 2018, 5(6): 94–102. doi: 10.3969/j.issn.2095-8471.2018.06.016

    WANG Pan, YUAN Guangtao. Load shedding calculation and factor analysis of casing floating technology: taking a horizontal well in a gas field as an example[J]. Unconventional Oil and Gas, 2018, 5(6): 94–102. doi: 10.3969/j.issn.2095-8471.2018.06.016
    [14]
    陈雷, 杨红歧, 肖京男, 等. 杭锦旗区块漂珠-氮气超低密度泡沫水泥固井技术[J]. 石油钻探技术, 2018, 46(3): 34–38.

    CHEN Lei, YANG Hongqi, XIAO Jingnan, et al. Ultra-low density hollow microspheres-nitrogen foamed cementing technology in Block Hangjinqi[J]. Petroleum Drilling Techniques, 2018, 46(3): 34–38.
    [15]
    王乐顶, 杨远光, 谢应权, 等. 新型固井冲洗液评价装置适用性分析[J]. 石油钻探技术, 2017, 45(1): 73–77.

    WANG Leding, YANG Yuanguang, XIE Yingquan, et al. Applicability of a new device for cementing flushing fluid evaluation[J]. Petroleum Drilling Techniques, 2017, 45(1): 73–77.
  • Related Articles

    [1]YANG Chunhe, WANG Lei, ZENG Yijin, GUO Yintong, YANG Guangguo, LIU Kui. A Laboratory Method for Evaluating the Bonding Tensile Strength of the Cement–Formation Interface Considering Multiple Factors[J]. Petroleum Drilling Techniques, 2023, 51(4): 48-54. DOI: 10.11911/syztjs.2023041
    [2]NIU Chengcheng, HOU Xutian, LI Yang. Triaxial Mechanical Tests and Multiple Regression Strength Analysis of Simalted Frozen Soil Sample from Mohe[J]. Petroleum Drilling Techniques, 2021, 49(3): 27-34. DOI: 10.11911/syztjs.2021049
    [3]LI Shuai, CHEN Junbin, ZHAO Qinlei. Experimental Study on the Scale Effect Law of Shale Strength and Deformation under Different Loading Modes[J]. Petroleum Drilling Techniques, 2020, 48(5): 39-48. DOI: 10.11911/syztjs.2020075
    [4]ZOU Deyong, WANG Gaoming, XING Chen. Experimental Study on Igneous Rock Abrasiveness[J]. Petroleum Drilling Techniques, 2020, 48(3): 41-46. DOI: 10.11911/syztjs.2020047
    [5]CHAI Long, LIN Yongxue, JING Junbin, HAN Zixuan. Anti-Gas Channeling Technology with Gas-Block Plug for High Temperature and High Pressure Wells in the Periphery of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(5): 40-45. DOI: 10.11911/syztjs.2018111
    [6]XIONG Min. Origin Analysis and Elimination of the S-Shaped Strength Development Curve of Cement Slurry[J]. Petroleum Drilling Techniques, 2018, 46(3): 39-43. DOI: 10.11911/syztjs.2018064
    [7]Lin Yongxue, Gao Shuyang, Zeng Yijin. Evaluation and Analysis of Rock Strength for the Longmaxi Shale[J]. Petroleum Drilling Techniques, 2015, 43(5): 20-25. DOI: 10.11911/syztjs.201505004
    [8]Yang Henglin, Shen Ruichen, Fu Li. Composition and Mechanical Properties of Gas Shale[J]. Petroleum Drilling Techniques, 2013, 41(5): 31-35. DOI: 10.3969/j.issn.1001-0890.2013.05.006
    [9]Li Wei, Yan Tie, Chen Shichun, Cong Changjiang. Mechanism Analysis of Tooth Sink into Rock Based on Unified Strength Theory[J]. Petroleum Drilling Techniques, 2013, 41(4): 32-36. DOI: 10.3969/j.issn.1001-0890.2013.04.008
    [10]Liang Erguo, Li Zifeng, Zhao Jinhai. Model for Collapsing Strength Calculation of Worn Casing[J]. Petroleum Drilling Techniques, 2012, 40(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2012.02.008
  • Cited by

    Periodical cited type(7)

    1. 李思琪,陈卓,李杉,李玮,郭金玉,刘德伟. 基于定切深和状态依赖时滞的共振冲击钻井系统动力学特性. 中国石油大学学报(自然科学版). 2024(01): 124-132 .
    2. 李根生,穆总结,田守嶒,黄中伟,孙照伟. 冲击破岩钻井提速技术研究现状与发展建议. 新疆石油天然气. 2024(01): 1-12 .
    3. 张诗达,朱勇,高强,苏红. 旋冲钻井技术研究现状与展望. 排灌机械工程学报. 2024(05): 497-507 .
    4. 杨小聪,黄丹,岳小磊,王想. 非煤矿山机械连续采矿技术研究进展与发展趋势. 有色金属(矿山部分). 2024(06): 1-24 .
    5. 向玲,王成东,周政. 硬岩地基基础快速成桩技术的研究进展. 城市建设理论研究(电子版). 2024(32): 117-119 .
    6. 刘永旺,魏森,管志川,邹德永,梁红军,陶兴华,玄令超,张建龙. 旋转冲击钻井方法硬岩破岩钻进特性的实验研究. 实验技术与管理. 2022(05): 44-48+59 .
    7. 王少锋,孙立成,周子龙,吴毓萌,石鑫垒. 非爆破岩理论和技术发展与展望. 中国有色金属学报. 2022(12): 3883-3912 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (1199) PDF downloads (143) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return