Citation: | SI Na, YE Haichao, NIU Xinming, WANG Lei, FENG Jianyun, JIN Ruihuan. Analysis on the Adaptability of Oil and Gas Drilling Technologies in Development for Hot Dry Rocks[J]. Petroleum Drilling Techniques, 2019, 47(4): 35-40. DOI: 10.11911/syztjs.2019042 |
There is a great potential for resource development in hot dry rocks. At this point, its development technologies mainly copy the oil and gas engineering technologies. However, hot dry rock resources possess their own unique characteristics which are different from regular temperature conditions of oil and gas reserovirs, and it is necessary to analyze the adaptability of oil and gas drilling engineering technologies in the development of hot dry rock resources. Thus, one can make appropriate improvements and realize faster, better and more economical development. By analyzing the stratigraphic distribution characteristics of hot dry rock geothermal resources and their similarities/differences with the conventional oil and gas resources, the technical demands of hot dry rock geothermal resources development on drilling engineering were summarized. Considering technical features of current oil and gas resources development, such as safe and efficient drilling, high temperature-resistance/high-efficiency rock breaking, high-precision characterization, low-cost development, the adaptability of conventional oil and gas drilling engineering technologies in the development of hot dry rock resources was analyzed, and the oil/gasdrilling new technologies that could be adopted for hot dry rock resources development were clarified. Moreover, this paper proposes new areas of emphasis in the development of high temperature-resistance downhole tools and working fluids. The research showed that some oil/gas drilling technologies could be successfully applied in the development of hot dry rock resources. However, further scientific and technological research is required in view of the unique demands of hot dry rock resources on drilling engineering technologies.
[1] |
FINGER J, BLANKENSHIP D. Handbook of best practices for geothermal drilling[R]. California: Sandia National Laboratories, 2010.
|
[2] |
DOE. A history of geothermal energy research and development in the United States[R]. Washington DC: US Department of Energy, 2010.
|
[3] |
多吉, 王贵玲, 郑克棪. 中国地热资源开发利用战略研究[M]. 北京: 科学出版社, 2017: 31-40..
DUO Ji, WANG Guiling, ZHENG Keyan. Strategic research on the development and utilization of geothermal resources in China[M]. Beijing: Science Press, 2017: 31-40.
|
[4] |
张厚福, 方朝亮, 高先志, 等. 石油地质学[M]. 北京: 石油工业出版社, 1999: 101-124.
ZHANG Houfu, FANG Chaoliang, GAO Xianzhi, et al. Petroleum geology[M]. Beijing: Petroleum Industry Press, 1999: 101-124.
|
[5] |
信石玉,高文金,黎爱军,等. 中低温地热钻机适应性技术方案研究[J]. 钻采工艺, 2015, 38(1): 79–82. doi: 10.3969/J.ISSN.1006-768X.2015.01.23
XIN Shiyu, GAO Wenjin, LI Aijun, et al. Tions to drilling rig for medium-low temperature geothermal resource[J]. Drilling & Production Technology, 2015, 38(1): 79–82. doi: 10.3969/J.ISSN.1006-768X.2015.01.23
|
[6] |
王定亚,忽宝民. 提速提效石油钻机技术现状及发展思路[J]. 石油矿场机械, 2016, 45(9): 45–48. doi: 10.3969/j.issn.1001-3482.2016.09.010
WANG Dingya, HU Baomin. Technology status and development trend for more efficient drilling rig[J]. Oil Field Equipment, 2016, 45(9): 45–48. doi: 10.3969/j.issn.1001-3482.2016.09.010
|
[7] |
郭先敏,侯芳. 国外钻井装备与技术新进展[J]. 石油机械, 2016, 44(7): 20–26.
GUO Xianmin, HOU Fang. Foreign drilling equipment and technology progress[J]. China Petroleum Machinery, 2016, 44(7): 20–26.
|
[8] |
陆川,王贵玲. 干热岩研究现状与展望[J]. 科技导报, 2015, 33(19): 13–21. doi: 10.3981/j.issn.1000-7857.2015.19.001
LU Chuan, WANG Guiling. Current status and prospect of hot dry rock research[J]. Science & Technology review, 2015, 33(19): 13–21. doi: 10.3981/j.issn.1000-7857.2015.19.001
|
[9] |
张德龙,翁炜,贾军,等. 干热岩钻探井控技术研究[J]. 科技导报, 2015, 33(19): 45–48. doi: 10.3981/j.issn.1000-7857.2015.19.006
ZHANG Delong, WENG Wei, JIA Jun, et al. Well control techniques in hot dry rock drilling[J]. Science & Technology review, 2015, 33(19): 45–48. doi: 10.3981/j.issn.1000-7857.2015.19.006
|
[10] |
张伟. 高温岩体热能开发及钻进技术[J]. 探矿工程(岩土钻掘工程), 2016, 43(10): 219–224. doi: 10.3969/j.issn.1672-7428.2016.10.047
ZHANG Wei. Extraction of high temperature rock mass heat energy and related drilling technologies[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2016, 43(10): 219–224. doi: 10.3969/j.issn.1672-7428.2016.10.047
|
[11] |
颜磊,蒋卓,王大勇,等. 干热岩抗高温钻井液体系研究[J]. 化学与生物工程, 2015, 32(7): 55–58. doi: 10.3969/j.issn.1672-5425.2015.07.015
YAN Lei, JIANG Zhuo, WANG Dayong, et al. Study on hot dry rock high temperature resistant drilling fluid system[J]. Chemistry & Bioengineering, 2015, 32(7): 55–58. doi: 10.3969/j.issn.1672-5425.2015.07.015
|
[12] |
BREEDE K, DZEBISASHVILI K, LIU Xiaolei, at al. A systematic review of enhanced (or engineered) geothermal sytems: past, present and future[J]. Geothermal Energy, 2013, 1(1): 1–27. doi: 10.1186/2195-9706-1-1
|
[13] |
张丽军,王旭,胡小燕,等. 抗260 ℃超高温水基钻井液体系[J]. 钻井液与完井液, 2015, 32(4): 5–8. doi: 10.3969/j.issn.1001-5620.2015.04.002
ZHANG Lijun, WANG Xu, HU Xiaoyan, et al. Ultra-high temperature water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(4): 5–8. doi: 10.3969/j.issn.1001-5620.2015.04.002
|
[14] |
潘军,王敏生,光新军. PDC钻头新进展及发展思考[J]. 石油机械, 2016, 44(11): 5–13.
PAN Jun, WANG Minsheng, GUANG Xinjun. New progress and future development of PDC bit[J]. China Petroleum Machinery, 2016, 44(11): 5–13.
|
[15] |
王红波,刘娇鹏,鲁鹏飞,等. PDC钻头发展与应用概况[J]. 金刚石与磨料磨具工程, 2011, 31(4): 74–78. doi: 10.3969/j.issn.1006-852X.2011.04.017
WANG Hongbo, LIU Jiaopeng, LU Pengfei, et al. General situations of development and application of PDC bits[J]. Diamond & Abrasives Engineering, 2011, 31(4): 74–78. doi: 10.3969/j.issn.1006-852X.2011.04.017
|
[16] |
邓勇,陈勉,金衍,等. 冲击作用下岩石破碎的动力学特性及能耗特征研究[J]. 石油钻探技术, 2016, 44(3): 27–32.
DENG Yong, CHEN Mian, JIN Yan, et al. Investigation of the dynamic characteristics and energy consumption for breaking rocks using the impact load[J]. Petroleum Drilling Techniques, 2016, 44(3): 27–32.
|
[17] |
DUCHANE D, BROWN D. Hot dry rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico[J]. GHC Bulletin, 2002(12): 13–19.
|
[18] |
查青春,柳贡慧,李军,等. 复合冲击破岩钻井新技术提速机理研究[J]. 石油钻探技术, 2017, 45(2): 20–24.
ZHA Chunqing, LIU Gonghui, LI Jun, Li Yumei, et al. The rock breaking mechanism of the compound percussive-rotary drilling method with a PDC bit[J]. Petroleum Drilling Techniques, 2017, 45(2): 20–24.
|
[19] |
马广军,王甲昌,张海平. 螺杆驱动旋冲钻井工具设计及试验研究[J]. 石油钻探技术, 2016, 44(3): 50–54.
MA Guangjun, WANG Jiachang, ZHANG Haiping. The design and experimental study of PDM driven rotary percussion drilling tool[J]. Petroleum Drilling Techniques, 2016, 44(3): 50–54.
|
[20] |
陈勇,吴仲华,聂云飞,等. 应用于螺杆钻具的轴向振动冲击装置研制[J]. 石油钻采工艺, 2017, 39(2): 212–217.
CHEN Yong, WU Zhonghua, NEI Yunfei, et al. Development of axial vibration impact device used for screw drill[J]. Oil Drilling & Production Technology, 2017, 39(2): 212–217.
|
1. |
孙虎,郭阳,张媛,喻建胜,陈思锦. 智能化钻井完井技术研究与工程实践. 钻采工艺. 2025(01): 46-54 .
![]() | |
2. |
廖华林,屈峰涛,许玉强,魏凯. 复合模型与模糊推理联合的溢流风险分级评估新方法. 天然气工业. 2025(03): 140-151 .
![]() |