XIE Yuning. Experimental Study on Low-Toxicity and Environment-Friendly Oil-Based Drilling Fluids[J]. Petroleum Drilling Techniques, 2017, 45(1): 45-50. DOI: 10.11911/syztjs.201701008
Citation: XIE Yuning. Experimental Study on Low-Toxicity and Environment-Friendly Oil-Based Drilling Fluids[J]. Petroleum Drilling Techniques, 2017, 45(1): 45-50. DOI: 10.11911/syztjs.201701008

Experimental Study on Low-Toxicity and Environment-Friendly Oil-Based Drilling Fluids

More Information
  • Received Date: July 24, 2016
  • Revised Date: October 18, 2016
  • To enhance the environmental protection performance of oil-based drilling fluids, and to eliminate problems related to the biological toxicity and difficulties in the degradation of conventional drilling fluids, an innovative low-toxicity and environment friendly oil-based drilling fluid has been developed. During its development, normal raw oil was primarily processed into base oil through desulfurization and dearomatization, then composed modifiers with innovative techniques were deployed to generate modified organic clay. Eventually, a low-toxicity oil-based drilling fluid system was generated through the optimization of additives and added specific volumes of such additives in the drilling fluid. Experimental results show that the innovative drilling system has filtration losses of 3.2-9.5 mL, a maximum differential precipitation density of 0.06 g/cm3 and ES over 1 190 V under high pressure and high pressure. In addition, the emulsion system can maintain desirable stability after water or low-quality clay invasion with a secondary cutting recovery rate of 99.17%, linear expansion rate of 1.92% and permeability recovery rate 88.5%-94.6%. Research results show that the newly developed low-toxicity and environmental-friendly oil-based drilling fluid system possesses outstanding rheological properties, stability, anti immersion, lubrication, inhibition and reservoir protection performances and can meet the requirements for safe and high-efficiency drilling and environmental protection in complex formations in the drilling of deep and ultra-deep wells.
  • [1]
    王中华.国内钻井液处理剂研发现状与发展趋势[J].石油钻探技术,2016,44(3):1-8. WANG Zhonghua.Present status and trends in research and development of drilling fluid additives in China[J].Petroleum Drilling Techniques,2016,44(3):1-8.
    [2]
    王茂功,徐显广,孙金声,等.气制油合成基钻井液关键处理剂研制与应用[J].钻井液与完井液,2016,33(3):30-34,40. WANG Maogong,XU Xianguang,SUN Jinsheng,et al.Study and application of additives for synthetic fluids with GTL as the base fluid[J].Drilling Fluid Completion Fluid,2016,33(3):30-34,40.
    [3]
    王旭东,郭保雨,陈二丁,等.油基钻井液用高性能乳化剂的研制与评价[J].钻井液与完井液,2014,31(6):1-4. WANG Xudong,GUO Baoyu,CHEN Erding,et al.Development and evaluation of a high performance oil base mud emulsifier[J].Drilling Fluid Completion Fluid,2014,31(6):1-4.
    [4]
    王显光,李雄,林永学.页岩水平井用高性能油基钻井液研究与应用[J].石油钻探技术,2013,41(2):17-22. WANG Xianguang,LI Xiong,LIN Yongxue.Research and application of high performance oil base drilling fluid for shale horizontal wells[J].Petroleum Drilling Techniques,2013,41(2):17-22.
    [5]
    林永学,王显光.中国石化页岩气油基钻井液技术进展与思考[J].石油钻探技术,2014,42(4):7-13. LIN Yongxue,WANG Xianguang.Development and reflection of oil-based drilling fluid technology for shale gas of Sinopec[J].Petroleum Drilling Techniques,2014,42(4):7-13.
    [6]
    林永学,王显光,李荣府.页岩气水平井低油水比油基钻井液研制及应用[J].石油钻探技术,2016,44(2):28-33. LIN Yongxue,WANG Xianguang,LI Rongfu.Development of oil-based drilling fluid with low oil-water ratio and its application to drilling horizontal shale gas wells[J].Petroleum Drilling Techniques,2016,44(2):28-33.
    [7]
    李雄,王显光,林永学,等.彭页2 HF井油基钻井液技术[J].钻采工艺,2015,38(1):40-43. LI Xiong,WANG Xianguang,LIN Yongxue,et al.Oil base drilling fluid technologies for Pengye 2 HF Well[J].Drilling Production Technology,2015,38(1):40-43.
    [8]
    张雪飞,张伟,徐新纽,等.准噶尔盆地南缘H101井高密度油基钻井液技术[J].石油钻探技术,2016,44(1):34-38. ZHANG Xuefei,ZHANG Wei,XU Xinniu,et al.High density oil-based drilling fluid deployed in Well H101 in the southern margin of the Junggar Basin[J].Petroleum Drilling Techniques,2016,44(1):34-38.
    [9]
    王中华.国内外油基钻井液研究与应用进展[J].断块油气田,2011,18(4):533-537. WANG Zhonghua.Research and application progress of oil-based drilling fluid at home and abroad[J].Fault-Block Oil Gas Field,2011,18(4):533-537.
    [10]
    侯业贵.低芳烃油基钻井液在页岩油气水平井中的应用[J].钻井液与完井液,2013,30(4):21-24. HOU Yegui.Application on low aromatic hydrocarbon oil based drilling fluid in shale oil and gas wells[J].Drilling Fluid Completion Fluid,2013,30(4):21-24.
    [11]
    张建阔,王旭东,郭保雨,等.油基钻井液用固体乳化剂的研制与评价[J].石油钻探技术,2016,44(4):58-64. ZHANG Jiankuo,WANG Xudong,GUO Baoyu,et al.Development and evaluation of a solid emulsifier for oil based drilling fluid[J].Petroleum Drilling Techniques,2016,44(4):58-64.
    [12]
    陶怀志,吴正良,贺海.国产油基钻井液CQ-WOM首次在页岩气威远H3-1井试验[J].钻采工艺,2014,37(5):87-90. TAO Huaizhi,WU Zhengliang,HE Hai.Tests of oil-base drilling fluid CQ-WOM made in China in Weiyuan H3-1 shale gas well[J].Drilling Production Technology,2014,37(5):87-90.
    [13]
    吴彬,王荐,舒福昌,等.油基钻井液在页岩油气水平井的研究与应用[J].石油天然气学报,2014,36(2):101-104. WU Bin,WANG Jian,SHU Fuchang,et al.Study and application of oil-based drilling fluids for horizontal well drilling[J].Journal of Oil and Gas Technology,2014,36(2):101-104.
    [14]
    刘明华,孙举,王中华,等.非常规油气藏水平井油基钻井液技术[J].钻井液与完井液,2013,30(2):1-5. LIU Minghua,SUN Ju,WANG Zhonghua,et al.Oil-based drilling fluid technology in horizontal wells with unconventional oil-gas reservoir[J].Drilling Fluid Completion Fluid,2013,30(2):1-5.
    [15]
    陈勉,葛洪魁,赵金洲,等.页岩油气高效开发的关键基础理论与挑战[J].石油钻探技术,2015,43(5):7-14. CHEN Mian,GE Hongkui,ZHAO Jinzhou,et al.The key fundamentals for the efficient exploitation of shale oil and gas and its related challenges[J].Petroleum Drilling Techniques,2015,43(5):7-14.
    [16]
    钱志伟,吴娇阳,李建成,等.全油基钻井液在油页岩地层钻井中的应用[J].大庆石油地质与开发,2016,35(1):170-174. QIAN Zhiwei,WU Jiaoyang,LI Jiancheng,et al.Application of the all oil-based drilling fluid in oil shale formation[J].Petroleum Geology Oilfield Development in Daqing,2016,35(1):170-174.
    [17]
    何振奎.泌页HF1井油基钻井液技术[J].石油钻探技术,2012,40(4):32-37. HE Zhenkui.Oil base drilling fluid technology applied in Well Biye HF 1[J].Petroleum Drilling Techniques,2012,40(4):32-37.
    [18]
    李建成,关键,王晓军,等.苏53区块全油基钻井液的研究与应用[J].石油钻探技术,2014,42(5):62-67. LI Jiancheng,GUAN Jian,WANG Xiaojun,et al.Research and application of oil-based drilling fluid technology in Block Su 53[J].Petroleum Drilling Techniques,2014,42(5):62-67.
  • Related Articles

    [1]TANG Ming, QI Xin, CAI Peng, WU Liugen. Development and Test of a MonoHole Expandable Casing System[J]. Petroleum Drilling Techniques, 2023, 51(1): 45-50. DOI: 10.11911/syztjs.2022030
    [2]LIU Junyi, CHAI Jinpeng, LI Guangquan, WANG Baotian. Enhanced Tight Plugging Water-Based Drilling Fluid Technology for Hard and Brittle Shales in Junggar Basin[J]. Petroleum Drilling Techniques, 2022, 50(5): 50-56. DOI: 10.11911/syztjs.2022022
    [3]SONG Xianzhi, LI Jiacheng, SHI Yu, XU Fuqiang, ZENG Yijin. Laboratory-Scale Experimental Study on the Injection-Production Performance of a Multilateral-Well Enhanced Geothermal System[J]. Petroleum Drilling Techniques, 2021, 49(1): 81-87. DOI: 10.11911/syztjs.2021019
    [4]ZHAO Jingfang, LIU Xuejing, GENG Tie. Development and Field Test of a BIO-OIL Environmental Protection Base Fluid for Synthetics-Based Drilling Fluids[J]. Petroleum Drilling Techniques, 2019, 47(3): 75-81. DOI: 10.11911/syztjs.2019072
    [5]JIA Jun, ZHAO Xiangyang, LIU Wei. Research and Field Test of Water-Based Environmental-Friendly Membrane Forming Drilling Fluid Technology in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(5): 36-42. DOI: 10.11911/syztjs.201705007
    [6]WANG Fangxiang, WANG Ruihe, ZHOU Weidong, LI Luopeng. Theoretical Study and Experimental Tests of Rock Breaking Depth under Particle Impacting[J]. Petroleum Drilling Techniques, 2016, 44(6): 36-41. DOI: 10.11911/syztjs.201606006
    [7]Zhang Hao, Zhang Bin, Xu Guojin. Applications of Zwitterionic Polymer HRH Drilling Fluid in Linpan Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(2): 57-63. DOI: 10.3969/j.issn.1001-0890.2014.02.012
    [8]Liu Junyi, Qiu Zhengsong, Huang Weian, Xing Xijin, Wang Weiji. Laboratory Research on High Density and High Temperature Drilling and Completion Fluids for Dongfang Gas Field in South China Sea[J]. Petroleum Drilling Techniques, 2013, 41(4): 78-82. DOI: 10.3969/j.issn.1001-0890.2013.04.017
    [9]Zhao Xin, Qiu Zhengsong, Shi Bingzhong, Lin Yongxue, Gao Shuyang. Experimental Study on High Performance Polyamine Drilling Fluid for Deepwater Drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 35-39. DOI: 10.3969/j.issn.1001-0890.2013.03.007
    [10]Wang Lin, Lin Yongxue, Yang Xiaohua, Cai Lishan, Chai Long. Effects of Weighting Agent on Ultra-High Density Drilling Fluid’s Performance[J]. Petroleum Drilling Techniques, 2012, 40(3): 48-53. DOI: 10.3969/j.issn.1001-0890.2012.03.010
  • Cited by

    Periodical cited type(2)

    1. 郑渊云,鲜明,邹祥富,杨若愚,龙远盛,黄凯然. 三维井筒套管柱居中度设计——以川渝油气田为例. 石油地质与工程. 2024(03): 102-107+112 .
    2. 林昕,苑仁国,韩雪银,陈玉山,于忠涛,刘素周. 地质导向钻井轨迹控制技术研究. 钻采工艺. 2021(02): 5-8 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (19787) PDF downloads (15198) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return