2. 北京工业大学, 北京 100124
2. Beijing University of Technology, Beijing, 100124, China
油气井钻井过程中,PDC钻头在钻进硬地层时易出现破岩效率低、因粘滑振动而失效快等问题[1-2],严重降低了机械钻速,大大提高了钻井成本[3-4]。为了抑制粘滑振动,国内外研制应用了扭力冲击器,该工具安装在近钻头处,通过产生高频往复的扭转冲击并作用到PDC钻头处来提高机械钻速[5-6]。另外,为了有效提高硬地层的机械钻速,国内外研制了不同型号的旋冲钻具[7-9],在现场应用获得了较好的提速效果。为了进一步提高硬地层的机械钻速并抑制PDC钻头的粘滑振动,柳贡慧等人[10]提出了复合冲击钻井破岩新技术,并研制了复合冲击钻具,将其安装在PDC钻头上部,可同时向PDC钻头施加高频低幅的单向轴向冲击和往复扭转冲击。为了清楚地认识复合冲击钻井破岩新技术的破岩机理,以进一步优化复合冲击钻具的结构、完善施工工艺,笔者采用理论及仿真分析相结合的方法,研究了PDC钻头在受轴向冲击与往复扭转冲击时的运动规律,分析了复合冲击提速及抑制PDC钻头粘滑振动的机理。
1 单向轴向冲击钻井提速机理PDC钻头的机械钻速与切削齿的切削深度成正比,当钻遇硬地层时,静压造成切削齿的切削深度不够且对岩石的损伤较小[11-12],导致PDC钻头单圈进尺较小,破岩效率不高。由于切削齿的切削深度与施加到钻头上的轴向力成正比,所以可以通过施加一个轴向冲击载荷 (动压) 来增大钻头承受的轴向力[12-15]。基于此,人们提出了在PDC钻头上提供单向轴向冲击的钻进方式。
1.1 钻柱系统简化模型钻进时,钻压使PDC钻头切削齿吃入岩石内部,转盘提供的扭矩使切削齿剪切其前端的岩石。对钻柱系统进行简化 (见图 1。图 1中:ω为转盘转速,rad/s;Tr为钻头处的阻抗扭矩,N·m;φ为钻头转动角度,rad;J为钻柱的有效转动惯量,kg·m2;W为钻压,kN;k为钻柱系统的扭转刚度,(N·m)/rad),将下部钻具组合 (BHA) 和钻头看作一个质量集中的飞轮[3],并进行以下假设:1) 钻柱系统的质量集中在钻头处;2) 钻杆简化为弹簧;3) 转盘转速恒定;4) 忽略钻柱与井壁之间的摩擦力。
钻头的运动方程为:
(1) |
其中, 钻柱的有效转动惯量J近似表示为[3]:
(2) |
式中:ρ为钻柱材料密度,kg/m3;I1,I2分别为钻杆和BHA的截面极惯性矩,m4;L1,L2分别为钻杆和BHA的长度,m。
1.2 PDC钻头单齿切削岩石的模型根据单向轴向冲击作用下PDC钻头单切削齿切削岩石的过程,将其简化为图 2所示模型。图 2中:Tc为阻抗扭矩中的切削扭矩,N·m;Tf为阻抗扭矩中的摩擦扭矩,N·m;TD为驱动扭矩,N·m;h为切削深度,m;ΔW为轴向冲击载荷,kN;Δh为由于单向轴向冲击所增加的切削深度,m。
向下的轴向冲击直接作用在切削齿上,切削齿的切削深度增加,切削深度的增加幅度与轴向冲击载荷ΔW成正比[16-17]。
1.3 PDC钻头扭转振动模型的建立和求解切削深度的增加会使切削齿前端的阻抗扭矩增大,增加的阻抗扭矩记为Tc(Δh)。由于冲击时间较短 (一般为微秒级),认为在冲击过程中钻头为准静态,即这个时间内钻头只改变了角加速度,设单向轴向冲击开始时刻t=0时,初始条件为:
(3) |
根据式 (1) 和式 (3),得到钻头的角速度为:
(4) |
钻头和转盘转动角度之间的差值Δφ为:
(5) |
由式 (4) 和式 (5) 可知,单向轴向冲击虽然能增加切削深度,但是会产生振幅为
某直井深3 000 m,采用常规转盘配合PDC钻头的方式钻进,钻柱系统参数及钻进参数为:I1=12×10-6m4,I2=280×10-6m4,L1=2 700 m,L2=300 m,k=480(N·m)/rad,ρ=7 850 kg/m3,ω=12.56 rad/s,Tf(h)=2 000 N·m,Tc(h)=5 000 N·m,Tc(Δh)=2 000N·m,利用式 (4) 和式 (5) 对单向轴向冲击作用下PDC钻头的扭转振动情况进行分析。
将参数代入式 (4) 和式 (5),计算得到单向轴向冲击作用下转盘转速和钻头转速随时间的变化关系 (见图 3),以及钻头和转盘之间转动角度的差值Δφ随时间的变化关系 (见图 4)。
从图 3可以看出,单向轴向冲击作用下钻头的最小转速为9.2 rad/s,最高转速为15.9 rad/s,其振幅为6.7 rad/s。从图 4可以看出,钻头和转盘之间转动角度的差值最大为-16.3 rad,最小为-7.9 rad。分析得出,单向轴向冲击会造成钻头转速的周期性波动,使钻头产生扭转振动。
2 复合冲击钻井提速机理分析在单向轴向冲击作用下,切削齿的切削深度会增加,从而使PDC钻头处的阻抗扭矩发生突变,导致PDC钻头产生扭转振动,易出现崩齿现象,缩短钻头的使用寿命。为了在利用单向轴向冲击提高机械钻速的同时避免其产生扭转振动,提出在单向轴向冲击作用的基础上增加往复扭转冲击作用,其中往复扭转冲击作用是为了抑制PDC钻头的扭转振动,与钻头转动方向一致的扭转冲击为正向扭转冲击,与钻头转动方向相反的扭转冲击为反向扭转冲击。
2.1 复合冲击破岩仿真分析复合冲击钻进时,正向扭转冲击和单向轴向冲击同时施加于钻头处。为了分析复合冲击的破岩机理,分别对PDC钻头单齿受单向轴向冲击和复合冲击的情况进行了模拟。模型假设:1) PDC钻头的切削齿为刚性体,岩石为硬脆性岩石;2) 岩石为连续、均质的介质;3) 忽略流体对岩石破碎的影响。
PDC钻头切削齿和岩石之间定义为面与面的侵蚀接触,接触面之间设计摩擦系数。静载 (钻压) 为10 kN,轴向和扭转冲击力的峰值为1 000 N,作用时间为4 ms,作用力曲线为三角形脉冲,求解时间定义为50 ms。岩石分别受单向轴向冲击和复合冲击时,其表面所受的剪切力分布云图分别见图 5和图 6。
从图 5和图 6可以看出,岩石受单向轴向冲击和复合冲击时所受的最大剪切力分别为25.7和62.7 MPa。可见,相对于单向轴向冲击,采用复合冲击时岩石所受的剪切力增大了140%,即复合冲击能够大幅度增加PDC钻头的切削扭矩。
2.2 往复扭转冲击减振机理分析 2.2.1 正向扭转冲击减振机理地层同时受单向轴向冲击和正向扭转冲击时,裂纹发展情况如图 7所示,正向扭转冲击载荷ΔT对切削齿前端的岩石产生冲击波,对岩石的挤压力增大,切削齿前端岩石内部裂纹数量及延伸长度增加,切削齿前端岩石抵抗破碎的能力降低。
正向扭转冲击作用在PDC钻头上,切削齿处的阻抗扭矩为:
(6) |
式中:ζ为冲击载荷造成的岩石抵抗破碎能力下降系数,0<ζ<1。
ζ的取值与岩石的性质、冲击功等有关,一般而言,对于相同的岩石,冲击功越大,取值越小,即冲击功越大岩石的损伤越大。岩石受轴向和正向扭转冲击时,越靠近冲击坑处,岩石内部裂纹越密集,越远离冲击坑,岩石内部裂纹越稀疏越短,理解为越远离冲击坑岩石的损伤越小,ζ值越大,阻抗扭矩越大。
此时,钻头的运动方程为:
(7) |
钻头的转速为:
(8) |
由式 (8) 可知,钻头转速的波动与Tc(h)-ζ[Tc(h)+ Tc(Δh)]的值成正比,该值越小,钻头处扭转振动幅度越小,当ζ[Tc(h)+Tc(Δh)]=Tc(h) 时,即每次复合冲击后钻头转动仍旧是一个平衡状态,不会出现扭转振动。
正向扭转冲击从2个方面抑制钻头扭转振动:1) 直接增加钻头的切削扭矩,增加破岩能量;2) 增大切削齿前端岩石的损伤,降低其阻抗扭矩。
2.2.2 反向扭转冲击减振机理为了分析反向扭转冲击减振机理,对钻柱系统进行简化,简化结果如图 8所示。
从图 8可以看出,当轴向和正向扭转冲击载荷卸载后,钻头恢复正常的旋转钻进,钻柱以恒定转速驱动钻头转动,钻头受到的阻抗扭矩逐渐增大,这时给钻头上端的钻柱施加一个与运动方向相反的冲击载荷,该载荷会造成弹簧压缩 (压缩量为Δx),当该载荷卸载后,储存在弹簧内的能量逐渐释放出并驱动钻头加速运动,从而产生一个较大的切削扭矩来切削岩石。
由以上分析可知,复合冲击钻井的主要提速机理为:静压使岩石产生预损伤,单向轴向冲击载荷使岩石产生足够的开裂区和切削深度,扭转冲击能克服切削齿前端由于轴向冲击增加而产生的阻抗扭矩,避免由于切削深度的突增造成钻头阻抗扭矩的突增,从而避免PDC钻头发生扭转振动。
3 结论1) 采用单向轴向冲击配合PDC钻头钻进时,单向轴向冲击在增加PDC钻头切削齿切削深度的同时,会增大切削齿前端岩石的阻抗扭矩,导致钻头产生扭转振动,易出现切削齿崩齿现象,对钻头的使用寿命产生不利的影响。
2) 在单向轴向冲击的基础上增加正向扭转冲击,能增加钻头的切削扭矩,增大对岩石的剪切力,同时增加切削齿前端岩石内部裂纹的发展,降低其抗剪切能力;增加反向扭转冲击能形成一个较大的切削扭矩峰值,有利于提高切削效率。
3) 复合冲击破岩钻井新技术结合了轴向冲击增加切削深度和往复扭转冲击抑制PDC钻头扭转振动的优点,在提高机械钻速的同时能够保护钻头。
[1] | HERNANDEZ-SUAREZ R, PUEBLA H, AGUILAR-LOPEZ R, et al. An integral high-order sliding mode control approach for stick-slip[J]. Petroleum Science and Technology, 2009, 27(8): 788–800. DOI:10.1080/10916460802455483 |
[2] | DEPOUHON A, DETOURNAY E. Instability regimes and self-excited vibrations in deep drilling systems[J]. Journal of Sound and Vibration, 2014, 333(7): 2019–2039. DOI:10.1016/j.jsv.2013.10.005 |
[3] | KYLLINGSTAD A, HALSEY G W. A study of slip/stick motion of the bit[J]. SPE Drilling Engineering, 1988, 3(4): 369–373. DOI:10.2118/16659-PA |
[4] | TUCKER W R, WANG C. On the effective control of torsional vibrations in drilling systems[J]. Journal of Sound and Vibration, 1999, 224(1): 101–122. DOI:10.1006/jsvi.1999.2172 |
[5] |
周祥林, 张金成, 张东清.
TorkBuster扭力冲击器在元坝地区的试验应用[J]. 钻采工艺, 2012, 35(2): 15–17.
ZHOU Xianglin, ZHANG Jincheng, ZHANG Dongqing. Experimental application of TorkBuster torsional impactor in Yuanba Region[J]. Drilling & Production Technology, 2012, 35(2): 15–17. |
[6] |
吕晓平, 李国兴, 王震宇, 等.
扭力冲击器在鸭深1井志留系地层的试验应用[J]. 石油钻采工艺, 2012, 34(2): 99–101.
LYU Xiaoping, LI Guoxing, WANG Zhenyu, et al. Experiment of torkbuster on Well YS1 in Silurian Formation[J]. Oil Drilling & Production Technology, 2012, 34(2): 99–101. |
[7] | RABIA H. A unified prediction model for percussive and rotary drilling[J]. Mining Science and Technology, 1985, 2(3): 207–216. DOI:10.1016/S0167-9031(85)90149-5 |
[8] |
李瑞营, 王峰, 陈绍云, 等.
大庆深层钻井提速技术[J]. 石油钻探技术, 2015, 43(1): 38–43.
LI Ruiying, WANG Feng, CHEN Shaoyun, et al. ROP improvement in deep formations in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 38–43. |
[9] |
王海涛, 张伟, 王国斌, 等.
自激振荡式冲击钻井工具在吉木萨尔地区的应用[J]. 断块油气田, 2014, 21(4): 530–532.
WANG Haitao, ZHANG Wei, WANG Guobin, et al. Application of self-oscillating impact drilling tool in Jimsar Area[J]. Fault-Block Oil & Gas Field, 2014, 21(4): 530–532. |
[10] |
柳贡慧, 李玉梅, 李军, 等.
复合冲击破岩钻井新技术[J]. 石油钻探技术, 2016, 44(5): 10–15.
LIU Gonghui, LI Yumei, LI Jun, et al. New technology with composite percussion drilling and rock breaking[J]. Petroleum Drilling Techniques, 2016, 44(5): 10–15. |
[11] |
罗生梅, 张宏林, 斯建刚, 等.
冲击凿岩的瞬态动力学及效率分析[J]. 兰州理工大学学报, 2009, 35(4): 39–42.
LUO Shengmei, ZHANG Honglin, SI Jiangang, et al. Transient dynamics of impact rock drilling and its efficiency analysis[J]. Journal of Lanzhou University of Technology, 2009, 35(4): 39–42. |
[12] |
赵伏军, 李夕兵, 冯涛, 等.
动静载荷耦合作用下岩石破碎理论分析及试验研究[J]. 岩石力学与工程学报, 2005, 24(8): 1315–1320.
ZHAO Fujun, LI Xibing, FENG Tao, et al. Theoretical analysis and experiments of rock fragmentation under coupling dynamic and static loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 1315–1320. |
[13] |
邓勇, 陈勉, 金衍, 等.
冲击作用下岩石裂纹长度预测模型及数值模拟研究[J]. 石油钻探技术, 2016, 44(4): 41–46.
DENG Yong, CHEN Mian, JIN Yan, et al. Prediction model and numerical simulation for rock fissure length under impact load[J]. Petroleum Drilling Techniques, 2016, 44(4): 41–46. |
[14] |
陈腾飞, 许金余, 刘石, 等.
岩石在冲击压缩破坏过程中的能量演化分析[J]. 地下空间与工程学报, 2013, 9(supplement 1): 1477–1482.
CHEN Tengfei, XU Jinyu, LIU Shi, et al. Research on rock energy evolution in the process of impact compression failure[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(supplement 1): 1477–1482. |
[15] |
玄令超, 管志川, 呼怀刚, 等.
旋转冲击破岩实验装置的设计与应用[J]. 石油钻采工艺, 2016, 38(1): 48–52.
XUAN Lingchao, GUAN Zhichuan, HU Huaigang, et al. Design and application of experimental apparatus for rock breaking by rotary percussion[J]. Oil Drilling & Production Technology, 2016, 38(1): 48–52. |
[16] | KAHRAMAN S. Rotary and percussive drilling prediction using regression analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(7): 981–989. DOI:10.1016/S0148-9062(99)00050-9 |
[17] | BATAKO A D, BABITSKY V I, HALLIWELL N A. A self-excited system for percussive-rotary drilling[J]. Journal of Sound and Vibration, 2003, 259(1): 97–118. DOI:10.1006/jsvi.2002.5158 |