留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合偶极子远探测响应影响因素及探测特性分析

谢关宝

谢关宝. 混合偶极子远探测响应影响因素及探测特性分析[J]. 石油钻探技术,2022, 50(6):28-34 doi: 10.11911/syztjs.2022108
引用本文: 谢关宝. 混合偶极子远探测响应影响因素及探测特性分析[J]. 石油钻探技术,2022, 50(6):28-34 doi: 10.11911/syztjs.2022108
XIE Guanbao. Analysis of response influencing factors and detection characteristics of hybrid dipole remote detection [J]. Petroleum Drilling Techniques,2022, 50(6):28-34 doi: 10.11911/syztjs.2022108
Citation: XIE Guanbao. Analysis of response influencing factors and detection characteristics of hybrid dipole remote detection [J]. Petroleum Drilling Techniques,2022, 50(6):28-34 doi: 10.11911/syztjs.2022108

混合偶极子远探测响应影响因素及探测特性分析

doi: 10.11911/syztjs.2022108
基金项目: 国家自然科学基金项目“海相深层油气富集机理与关键工程技术基础研究”(编号:U19B6003)资助
详细信息
    作者简介:

    谢关宝(1977—),男,山东济宁人,2001年毕业于石油大学(华东)应用地球物理专业,2013年获中国石油大学(华东)地质资源与地质工程专业博士学位,高级工程师,主要从事测井方法研究、岩石物理试验与分析、地球物理正反演及测井资料解释等方面的工作。E-mail:baoupc@163.com

  • 中图分类号: P631.54

Analysis of Response Influencing Factors and Detection Characteristicsof Hybrid Dipole Remote Detection

  • 摘要:

    现有随钻测井技术存在仪器过长、信号同步困难和探测盲区大等问题,如何实现对地层边界的实时探测与精确成像,是目前随钻测井的热点和难点问题。为此,以闭合线圈为发射线圈、非闭合线圈为接收线圈,设计了一种新型混合偶极子天线系统,给出了其结构和测量原理,构建了测量电势信号转换成地质信号的方法,分析了基于电场信号的远探测响应规律及影响因素。在此基础上,对比分析了典型层状介质混合偶极子远探测地质信号的实部和虚部与源距及工作频率的关系,考察了地质信号对地层界面方位的敏感性,以及电阻率和对比度对探边能力的影响规律。最后,借助单界面模型,明确了混合偶极子远探测方法在短源距及多种工作频率下的最大探边距离。研究结果可为混合偶极子远探测测井仪器的研制提供依据。

     

  • 图 1  电偶极子天线等效图

    Figure 1.  Equivalence of electric dipole antennas

    图 2  混合偶极子天线基本结构

    Figure 2.  Basic structure of the hybrid dipole antenna

    图 3  100 kHz工作频率下不同源距ME天线的响应信号

    Figure 3.  Response signals of ME antennas with different coil spacing under a working frequency of 100 kHz

    图 4  不同工作频率下ME天线的响应信号

    Figure 4.  Response signals of ME antennas under different working frequencies

    图 5  ME天线响应信号的实部(100 kHz)

    Figure 5.  Real part of response signals of ME antennas (100 kHz)

    图 6  ME天线响应信号的虚部(100 kHz)

    Figure 6.  Imaginary part of response signals of ME antennas (100 kHz)

    图 7  不同地层电阻率条件下的测井响应信号(源距1.50 m、工作频率100 kHz)

    Figure 7.  Logging response signals under different formation resistivity (a coil spacing of 1.50 m and a working frequency of 100 kHz)

    图 8  不同地层电阻率条件下的测井响应信号(源距1.50 m、工作频率2 MHz)

    Figure 8.  Logging response signals under different formation resistivity (a coil spacing of 1.50 m and a working frequency of 2 MHz)

    图 9  不同地层电阻率对比度条件下的测井响应信号

    Figure 9.  Logging response signals under different formation resistivity contrasts

    图 10  不同工作频率下测井响应信号实部探边Picasso图

    Figure 10.  Picasso diagram of boundary detection by real part of logging response signals under different working frequencies

    图 11  不同工作频率下测井响应信号虚部探边Picasso图

    Figure 11.  Picasso diagram of boundary detection by imaginary part of logging response signals under different working frequencies

    图 12  不同工作频率下测井响应信号的综合探边Picasso图

    Figure 12.  Picasso diagram of comprehensive boundary detection of logging response signals under different working frequencies

  • [1] 李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001

    LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
    [2] 张辛耘,王敬农,郭彦军. 随钻测井技术进展和发展趋势[J]. 测井技术,2006,30(1):10–15. doi: 10.3969/j.issn.1004-1338.2006.01.002

    ZHANG Xinyun, WANG Jingnong, GUO Yanjun. Advances and trends in logging while drilling technology[J]. Well Logging Technology, 2006, 30(1): 10–15. doi: 10.3969/j.issn.1004-1338.2006.01.002
    [3] 黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132

    HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132
    [4] 杨震,文艺,肖红兵. 随钻方位电磁波仪器探测电阻率各向异性新方法[J]. 石油钻探技术,2016,44(3):115–120. doi: 10.11911/syztjs.201603021

    YANG Zhen, WEN Yi, XIAO Hongbing. A new method of detecting while drilling resistivity anisotropy with azimuthal electromagnetic wave tools[J]. Petroleum Drilling Techniques, 2016, 44(3): 115–120. doi: 10.11911/syztjs.201603021
    [5] 康正明,柯式镇,李新,等. 随钻电阻率成像测井仪定量评价地层界面探究[J]. 石油钻探技术,2020,48(4):124–130. doi: 10.11911/syztjs.2020087

    KANG Zhengming, KE Shizhen, LI Xin, et al. Probe into quantitative stratigraphic interface evaluation using a resistivity imaging LWD tool[J]. Petroleum Drilling Techniques, 2020, 48(4): 124–130. doi: 10.11911/syztjs.2020087
    [6] 谢关宝,杨震,赵文杰. 基于ICCG方法的随钻方位电磁波测井响应模拟研究[J]. 测井技术,2015,39(1):27–31. doi: 10.16489/j.issn.1004-1338.2015.01.006

    XIE Guanbao, YANG Zhen, ZHAO Wenjie. Numerical study on the response of azimuth electromagnetic wave resistivity while drilling based on the ICCG method[J]. Well Logging Technology, 2015, 39(1): 27–31. doi: 10.16489/j.issn.1004-1338.2015.01.006
    [7] YANG Jian, OMERAGIC D, LIU Chengbing, et al. Bed-boundaryeffect removal to aid formation resistivity interpretation from LWDpropagation  measurements  at  all  dip  angles[R].  SPWLA-2005-F,2005.
    [8] LI Hu, ZHOU J. Distance of detection for LWD deep and ultra-deep azimuthal resistivity tools[R]. SPWLA-2017-PPPP, 2017.
    [9] 王磊,范宜仁,袁超,等. 随钻方位电磁波测井反演模型选取及适用性[J]. 石油勘探与开发,2018,45(5):914–922. doi: 10.11698/PED.2018.05.18

    WANG Lei, FAN Yiren, YUAN Chao, et al. Selection criteria and feasibility of the inversion model for azimuthal electromagnetic logging while drilling (LWD)[J]. Petroleum Exploration and Development, 2018, 45(5): 914–922. doi: 10.11698/PED.2018.05.18
    [10] LI Shanjun, CHEN Jiefu, BINFORD T L, Jr. Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle[R]. SPWLA-2014-EEEE, 2014.
    [11] LI Shanjun. System and methodology of look ahead and look around LWD tool: US 2018/0306024 A1[P]. 2018 − 10 − 25.
    [12] WANG Lei, LI Hu, FAN Yiren, et al. Sensitivity analysis and inversion processing of azimuthal resistivity logging-while-drilling measurements[J]. Journal of Geophysics and Engineering, 2018, 15(6): 2339–2349. doi: 10.1088/1742-2140/aacbf4
    [13] 王磊, 范宜仁, 谢关宝, 等. 基于电场信息的随钻电磁波短源距远探测方法研究[C]//2020年中国地球科学联合学术年会论文集. 重庆: 中国地球物理学会, 2020: 3687.

    WANG Lei, FAN Yiren, XIE Guanbao, et al. Research on short source distance and long distance detection method of electromagnetic wave while drilling based on electric field information[C]//Proceedings of the 2020 China Geoscience Joint Academic Annual Conference. Chongqing: Chinese Geophysical Society, 2020: 3687.
  • 加载中
图(12)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  28
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-12
  • 修回日期:  2022-10-08
  • 网络出版日期:  2022-11-08

目录

    /

    返回文章
    返回