留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能井井下液压控制信号传输特性研究

喻贵民 许亮斌 谢仁军 盛磊祥 何东升

喻贵民,许亮斌,谢仁军,等. 智能井井下液压控制信号传输特性研究[J]. 石油钻探技术,2022, 50(6):98-106 doi: 10.11911/syztjs.2022099
引用本文: 喻贵民,许亮斌,谢仁军,等. 智能井井下液压控制信号传输特性研究[J]. 石油钻探技术,2022, 50(6):98-106 doi: 10.11911/syztjs.2022099
YU Guimin, XU Liangbin, XIE Renjun, et al. Transmission characteristics of downhole hydraulic control signals in intelligent wells [J]. Petroleum Drilling Techniques,2022, 50(6):98-106 doi: 10.11911/syztjs.2022099
Citation: YU Guimin, XU Liangbin, XIE Renjun, et al. Transmission characteristics of downhole hydraulic control signals in intelligent wells [J]. Petroleum Drilling Techniques,2022, 50(6):98-106 doi: 10.11911/syztjs.2022099

智能井井下液压控制信号传输特性研究

doi: 10.11911/syztjs.2022099
基金项目: 国家科技重大专项“深水钻完井工程技术”(编号:2016ZX05028-001)资助
详细信息
    作者简介:

    喻贵民(1969—),男,江西南昌人,1992年毕业于西南石油学院矿业机械专业,2009年获西南石油大学机械设计及理论专业博士学位,高级工程师,主要从事海洋钻完井技术创新和成果转化工作。E-mail: yugm@cnooc.com.cn。

  • 中图分类号: TE257

Transmission Characteristics of Downhole Hydraulic Control Signalsin Intelligent Wells

  • 摘要:

    液压控制的智能井系统通过长达数千米的液压管线向井下传送液压控制信号和动力,选择目的层层位和控制流量。向井下传送液压控制信号时,受传输介质和细长液压管线的影响,液压控制信号的传输速度、强度和形态都会发生衰减和扭曲,难以被井下设备识别。为对井下执行器进行可靠的控制,讨论了液压控制信号的传输速度、井眼温度沿深度方向变化对传输介质黏度的影响;分析了井口压力向井下传播时压力与时间的变化关系、地面液压控制信号传到井下时的形态变化、同时施加液压控制信号和液压动力信号时的传输特性,以及有无阻力状态下开启井下滑套时控制压力的变化;再考虑管线内径、加压方式、井眼环境、液压油黏度等对上述传输特性的影响,得出液压控制压力应大于5 MPa、3 000 m深水井中井下液压信号传输时间约为25 min等定量评估结论。研究结论可为开展井下液压控制提供理论参考。

     

  • 图 1  不同含气量和压力下管线内压力波的传输速度

    Figure 1.  Pressure wave speed in the pipeline under different air content and pressures

    图 2  液压油运动黏度随井深的变化曲线

    Figure 2.  Variation curve of viscosity of hydraulic oil with well depth

    图 3  井深–压力传播时间平面上的差分网格

    Figure 3.  Differential grids on the plane of well depth and the transmission time of pressure

    图 4  流量达到0.9 L/min时管线内的压力分布

    Figure 4.  Pressure distribution in the pipeline at a flow rate of 0.9 L/min

    图 5  井口压力达到40 MPa时管线内压力分布

    Figure 5.  Pressure distribution in the pipeline under a wellhead pressure of 40 MPa

    图 6  0~4 000 s加压时间内管线内压力、井深与时间的关系曲面

    Figure 6.  Relation surface of pipeline pressure, well depth, and time during a pressure applied period of 0–4 000 s

    图 7  井口和井底管线内压力与时间的关系曲线

    Figure 7.  Variation curves for well head and bottom hole pressure in the pipeline over time

    图 8  液压信号传输特性试验装置的控制界面

    Figure 8.  Control interface of the hydraulic signal transmission characteristic test device

    图 9  试验测得和模拟计算所得管线出口压力

    Figure 9.  Tested and calculated pressures at pipeline ends

    图 10  试验和模拟计算管线出口压力与进口压力比

    Figure 10.  Ratios of tested and calculated pressures at pipeline ends to wellhead pressures

    图 11  井口、井底矩形波信号随时间的变化曲线

    Figure 11.  Variation curves of rectangular signals with time at well head and bottom hole

    图 12  井口和井底的矩形波信号对比

    Figure 12.  Comparison of rectangular signals at well head and bottom hole

    图 13  驱动无阻力井下滑套时井口和井底压力随时间的变化曲线

    Figure 13.  Variation curves of pressure over time at well head and bottom hole when powering downhole sliding sleeves without resistance

    图 14  驱动有阻力井下滑套时井口和井底压力随时间的变化曲线

    Figure 14.  Variation curves of pressure over time at well head and bottom hole when powering downhole sliding sleeves with resistance

    图 15  内径4.572和3.048 mm管线井底压力随时间的变化曲线

    Figure 15.  Variation curves of bottom hole pressure over time with inner diameters of 4.572 mm and 3.048 mm

    图 16  典型的流量时间曲线

    Figure 16.  Typical flow rate-time curve

    图 17  普通电机加压时井口和井底压力随时间的变化曲线

    Figure 17.  Variation curves of pressure over time at well head and bottom hole using a ordinary motor for pressure application

    图 18  陆地井和深水井井底压力随时间的变化曲线

    Figure 18.  Variation curves of bottom-hole pressure over time in onshore and deep-offshore wells

  • [1] BOTTO G, GIULIANI C, MAGGIONI B, et al. Innovative remote controlled completion for Aquila deepwater challenge[R]. SPE 36948, 1996.
    [2] SCHNITZLER E, FERREIRA GONÇALEZ L, SAVOLDI ROMAN R, et al. 100th intelligent completion installation: a milestone in Brazilian pre-salt development[R]. SPE 195935, 2019.
    [3] Anon. Halliburton website[Z]. [2022-01-15]. http://www.halliburton.com/en-US/ps/well-dynamics/well-completions/intelligent-completions/default.page?node-id=hfqel9vs&nav=en-US_completions_public.
    [4] POTIANI M, EDUARDO M. A review of IC installations: lessons learned from electric-hydraulic, hydraulic and all-electric sys-tems[R]. OTC 25391, 2014.
    [5] JOUBRAN J. Intelligent completions: design and reliability of interval control valves in the past, present, and future[R]. OTC 28917, 2018.
    [6] TYVONCHUK S P. Predicting of the geometrical behavior of formations in subsurface based on the analysis of LWD/MWD data while drilling horizontal wells[R]. SPE 208511, 2021.
    [7] 刘修善,苏义脑. 钻井液脉冲信号的传输特性分析[J]. 石油钻采工艺,2000,22(4):8–10. doi: 10.3969/j.issn.1000-7393.2000.04.003

    LIU Xiushan, SU Yinao. Investigation on the transmission behaviors of drilling fluid pulse signal[J]. Oil Drilling & Production Technology, 2000, 22(4): 8–10. doi: 10.3969/j.issn.1000-7393.2000.04.003
    [8] TRIKI A, CHAKER M A. Compound technique-based inline design strategy for water-hammer control in steel pressurized-piping systems[J]. International Journal of Pressure Vessels and Piping, 2019, 169: 188–203. doi: 10.1016/j.ijpvp.2018.12.001
    [9] ILAMAH O, WATERHOUSE R. Field-scale production optimization with intelligent wells[R]. SPE 190827, 2018.
    [10] MCSTRAVICK D M, ROTHERS D, BLUM G. Laboratory testing of reflected pressure pulses in small-diameter tubing[R]. OTC 7045, 1992.
    [11] CHAUDHRY M H. 实用水力瞬变过程[M]. 程永光, 杨建东, 赖旭, 等译. 3版. 北京: 中国水利水电出版社, 2015: 42−43.

    CHAUDHRY M H. Applied hydraulic transients[M]. CHENG Yongguang, YANG Jiandong, LAI Xu, et al, translated. 3rd ed. Beijing: China Water & Power Press, 2015: 42−43.
    [12] 雷天觉. 新编液压工程手册[M]. 北京: 北京理工大学出版社, 1998: 48.

    LEI Tianjue. New hydraulic engineering manual[M]. Beijing: Beijing Institute of Technology Press, 1998: 48.
    [13] 温诗铸, 黄平. 摩擦学原理[M]. 3版. 北京: 清华大学出版社, 2008: 8−10.

    WEN Shizhu, HUANG Ping. Principles of tribology[M]. 3rd ed. Beijing: Tsinghua University Press, 2008: 8−10.
    [14] 怀利, 斯特里特. 瞬变流[M]. 清华大学流体传动与控制教研室, 译. 北京: 水利电力出版社, 1983: 25−29.

    WYLIE E B, STREETER V L. Fluid transients[M]. Teaching and Research Group of Fluid Transmission and Control, Tsinghua University, translated. Beijing: Water Resources and Electric Power Press, 1983: 25−29.
    [15] 包日东. 管道瞬变流动分析[M]. 北京: 中国石化出版社, 2015: 39−45.

    BAO Ridong. Analysis of transient flow in pipeline[M]. Beijing: China Petrochemical Press, 2015: 39−45.
  • 加载中
图(18)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  26
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-08-23
  • 网络出版日期:  2022-11-08

目录

    /

    返回文章
    返回