留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下储气库注气过程一体化压力及地层参数计算方法

刘慧 丁心鲁 张士杰 方云贵 郝晓波 郑玮鸽

刘慧,丁心鲁,张士杰,等. 地下储气库注气过程一体化压力及地层参数计算方法[J]. 石油钻探技术,2022, 50(6):64-71 doi: 10.11911/syztjs.2022047
引用本文: 刘慧,丁心鲁,张士杰,等. 地下储气库注气过程一体化压力及地层参数计算方法[J]. 石油钻探技术,2022, 50(6):64-71 doi: 10.11911/syztjs.2022047
LIU Hui, DING Xinlu, ZHANG Shijie, et al. Integrated calculation method of pressure and formation parameters in gas injection process of underground gas storage [J]. Petroleum Drilling Techniques,2022, 50(6):64-71 doi: 10.11911/syztjs.2022047
Citation: LIU Hui, DING Xinlu, ZHANG Shijie, et al. Integrated calculation method of pressure and formation parameters in gas injection process of underground gas storage [J]. Petroleum Drilling Techniques,2022, 50(6):64-71 doi: 10.11911/syztjs.2022047

地下储气库注气过程一体化压力及地层参数计算方法

doi: 10.11911/syztjs.2022047
基金项目: 陕西省重点研发计划项目“油气田开发方案优化设计云平台”(编号:2019ZDLGY11-04)资助
详细信息
    作者简介:

    刘慧(1992—),男,湖北荆州人,2013年毕业于长江大学资源勘查工程专业,2015年获中国地质大学(武汉)石油与天然气工程专业硕士学位,工程师,主要从事试油地质评价方面的工作。E-mail:xjsyliuh1@cnpc.com.cn

  • 中图分类号: TE921+.1

Integrated Calculation Method of Pressure and Formation Parameters in Gas Injection Process of Underground Gas Storage

  • 摘要:

    为了掌握地下储气库注气过程中的压力动态变化情况,解决持续注气导致的地层参数难以确定的问题,依据现场静、动态资料,基于一种改进粒子群优化算法,综合储层压力、井底压力和井口压力的计算方法,建立了一种地下储气库注气过程一体化压力及地层参数计算方法。首先,利用计算储层压力、井底压力和井口压力的方法计算出井口压力;然后,应用改进粒子群优化算法,不断调整、优化压力和地层参数,使计算的井口压力与实测井口压力达到最优拟合,进而得到储层压力、井底压力,以及储层平均渗透率、探测半径等地层参数。利用该方法计算了呼图壁储气库3口注采井的井口压力和储层的平均渗透率,3口注采井计算井口压力与实测井口压力的决定系数分别为0.988 9,0.989 3和0.978 4,计算出的储层渗透率与试井解释的渗透率基本一致,说明该计算方法的计算结果可靠。研究结果表明,利用地下储气库注气过程一体化压力及地层参数计算方法,可以了解地下储气库注气过程中的压力变化情况,有助于指导地下储气库的安全运行。

     

  • 图 1  基于改进粒子群优化算法的压力和地层参数计算流程

    Figure 1.  Flow chart of pressure and formation parameter calculation based on improved PSO algorithm

    图 2  3口注采井实测与计算井口压力的相关性和压力计算及预测结果

    Figure 2.  Correlation between calculated and measured wellhead pressure and results of calculated and predicted pressure of three injection and production wells

    表  1  3口实例井的基础参数

    Table  1.   Basic parameters of three example wells

    井名井深/m井筒有效
    半径/m
    孔隙度天然气
    相对密度
    天然气黏度/
    (mPa·s)
    产能方程
    类型
    产能系数A(C)产能系数B(n)
    X1井3 529.000.0760.1650.780.020二项式0.004 30.030 4
    X2井3 553.750.0760.1550.650.020二项式0.386 20.031 9
    X3井3 582.000.0880.2090.75 0.015指数式1.391 40.840 8
    下载: 导出CSV

    表  2  粒子群优化算法结果对比及地层参数

    Table  2.   Comparison of results obtained from PSO algorithm and formation parameters

    井名算法平均渗透率/mD探测
    半径/m
    相对误差,%决定系数运行
    时间/s
    注气前期注气后期
    X1井基本粒子群优化算法10.4815.01305.590.120.988 91 657.35
    改进粒子群优化算法10.4815.01305.590.120.988 91 445.51
    X2井改进粒子群优化算法11.2519.99294.280.240.989 3 857.23
    X3井改进粒子群优化算法10.0029.99301.260.110.978 4 418.35
    注:①和②分别为计算井口油压和实测井口油压的相对误差和决定系数。
    下载: 导出CSV
  • [1] 袁光杰,张弘,金根泰,等. 我国地下储气库钻井完井技术现状与发展建议[J]. 石油钻探技术,2020,48(3):1–7.

    YUAN Guangjie, ZHANG Hong, JIN Gentai, et al. Current status and development suggestions in drilling and completion technology of underground gas storage in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 1–7.
    [2] 朱静,张福兴,杨显志,等. 压降试井技术在辽河油田S储气库中的应用[J]. 石油钻采工艺,2021,43(5):682–686.

    ZHU Jing, ZHANG Fuxing, YANG Xianzhi, et al. Application of drawdown test technology in SL underground gas storage of Liaohe Oilfield[J]. Oil Drilling & Production Technology, 2021, 43(5): 682–686.
    [3] 周军,彭井宏,罗 莎,等. 考虑安全稳定运行的大型枯竭气藏储气库注采优化[J]. 特种油气藏,2021,28(5):76–82.

    ZHOU Jun, PENG Jinghong, LUO Sha, et al. Optimization of gas injection and production in gas storage based on large depleted gas reservoir with consideration of safe and stable operation[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 76–82.
    [4] 舒刚,刘健,冯逢,等. 储气库注采井水泥环破坏机理实验研究[J]. 钻井液与完井液,2020,37(4):507–511.

    SHU Gang, LIU Jian, FENG Feng, et al. Experimental study on failure mechanism of cement sheath in injection production well of gas storage[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 507–511.
    [5] 于本福,闫相祯,杨秀娟,等. 考虑储层孔隙介质分形特点的衰竭气藏储气库储层压力分布预测[J]. 石油学报,2013,34(5):1017–1022.

    YU Benfu, YAN Xiangzhen, YANG Xiujuan, et al. Dynamic reservoir pressure prediction of depleted reservoir gas storage considering the fractal feature of porous medium[J]. Acta Petrolei Sinica, 2013, 34(5): 1017–1022.
    [6] 唐立根,王皆明,丁国生,等. 基于开发资料预测气藏改建储气库后井底流入动态[J]. 石油勘探与开发,2016,43(1):127–130.

    TANG Ligen, WANG Jieming, DING Guosheng, et al. Downhole inflow-performance forecast for underground gas storage based on gas reservoir development data[J]. Petroleum Exploration and Development, 2016, 43(1): 127–130.
    [7] 岳三琪,付玉,伍勇,等. 地下储气库注采井井底压力计算研究[J]. 油气藏评价与开发,2017,7(3):28–33.

    YUE Sanqi, FU Yu, WU Yong, et al. Bottom hole pressure calculation of injection and production wells of underground gas storage[J]. Reservoir Evaluation and Development, 2017, 7(3): 28–33.
    [8] 王清辉,朱明,冯进,等. 基于渗透率合成技术的砂岩油藏产能预测方法[J]. 石油钻探技术,2021,49(6):105–112.

    WANG Qinghui, ZHU Ming, FENG Jin, et al. A method for predicting productivity of sandstone reservoirs based on permeability synthesis technology[J]. Petroleum Drilling Techniques, 2021, 49(6): 105–112.
    [9] 陈显学. 底水气藏型储气库注采渗流规律实验[J]. 特种油气藏,2022,29(4):101–106.

    CHEN Xianxue. Test on the seepage pattern in injection and production of gas storage in bottom-water gas reservoir[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 101–106.
    [10] 张广权,范照伟,曾大乾,等. 交变载荷下储气库储层与盖层损伤规律[J]. 断块油气田,2021,28(6):769–774.

    ZHANG Guangquan, FAN Zhaowei, ZENG Daqian, et al. Damage law of reservoir and cap rock of gas storage under alternating load[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 769–774.
    [11] 杜果,杨丹,周兴燕,等. 考虑垂向裂缝发育的火山岩气藏部分打开井试井分析方法[J]. 天然气地球科学,2020,31(10):1367–1374.

    DU Guo, YANG Dan, ZHOU Xingyan, et al. Well test analytical model for a partial opening vertical well in enriched vertical fracture tight gas volcanic reservoir[J]. Natural Gas Geoscience, 2020, 31(10): 1367–1374.
    [12] 郝少伟,李勇军,赵尚弘,等. 基于改进粒子群算法的多载波NOMA功率分配策略[J]. 电子学报,2020,48(10):2009–2016.

    HAO Shaowei, LI Yongjun, ZHAO Shanghong, et al. Multicarrier NOMA power allocation strategy based on improved particle swarm optimization algorithm[J]. Acta Electronica Sinica, 2020, 48(10): 2009–2016.
    [13] 陈小龙,李宜强,管错,等. 基于量纲分析的优化神经网络模型预测GAGD非混相开发油藏采收率[J]. 石油科学通报,2019,4(3):288–299.

    CHEN Xiaolong, LI Yiqiang, GUAN Cuo, et al. An optimized neural network prediction model for gas assisted gravity drainage recovery based on dimensional analysis[J]. Petroleum Science Bulletin, 2019, 4(3): 288–299.
    [14] 刘智颖,张柏桥,许巍,等. 焦石坝地区页岩Cole-Cole模型参数的快速计算方法[J]. 油气藏评价与开发,2020,10(5):42–48.

    LIU Zhiying, ZHANG Baiqiao, XU Wei, et al. A fast computing method for rock electric parameters of Cole-Cole model in Jiaoshiba Zone[J]. Reservoir Evaluation and Development, 2020, 10(5): 42–48.
    [15] KENNEDY J. Particle swarm optimization[C]//Encyclopedia of machine learning. New York: Springer, 2011: 177−191.
    [16] SHI Y, Eberhart R. A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360),1998: 69−73.
    [17] 王怡. 页岩气藏裂缝区地层孔隙压力准确求取方法[J]. 石油钻探技术,2020,48(3):29–34.

    WANG Yi. A method for accurate calculation of pore pressure in fractured formations of shale gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(3): 29–34.
    [18] 胥洪成,张士杰,李翔,等. 气藏改建储气库下限压力设计新方法[J]. 天然气地球科学,2020,31(11):1648–1653.

    XU Hongcheng, ZHANG Shijie, LI Xiang, et al. A new design method of minimum storage pressure of underground gas storage rebuilt from gas reservoir[J]. Natural Gas Geoscience, 2020, 31(11): 1648–1653.
    [19] 李江,陈先超,高平,等. 考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法[J]. 石油钻探技术,2021,49(3):111–116.

    LI Jiang, CHEN Xianchao, GAO Ping, et al. A pseudo-steady-state productivity prediction method for fractured carbonate gas wells considering stress-sensitivity effects[J]. Petroleum Drilling Techniques, 2021, 49(3): 111–116.
    [20] 游利军,邵佳新,高新平,等. 储气库注采过程中有效应力变化模拟试验[J]. 石油钻探技术,2020,48(6):104–108.

    YOU Lijun, SHAO Jiaxin, GAO Xinping, et al. Simulation tests of effective stress changes in gas storage during injection and production[J]. Petroleum Drilling Techniques, 2020, 48(6): 104–108.
    [21] 余意,王雪瑞,柯珂,等. 极地钻井井筒温度压力预测模型及分布规律研究[J]. 石油钻探技术,2021,49(3):11–20.

    YU Yi, WANG Xuerui, KE Ke, et al. Prediction model and distribution law study of temperature and pressure of the wellbore in drilling in Arctic region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11–20.
    [22] 张俊法,曾大乾,张广权,等. 超高压气藏改建储气库注采能力及库容评价:以川东北清溪储气库为例[J]. 断块油气田,2021,28(6):775–780.

    ZHANG Junfa, ZENG Daqian, ZHANG Guanquan, et al. Injection-productivity and storage capacity evaluation for rebuilding gas storage based on ultra-high pressure gas reservoir:a case study of Qingxi gas storage in Northeast Sichuan[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 775–780.
    [23] 张辉,赵晨曦,王杨,等. 基于改进粒子群算法的空间众包任务分配模型[J]. 计算机应用研究,2020,37(9):2698–2700.

    ZHANG Hui, ZHAO Chenxi, WANG Yang, et al. Spatial crowdsourcing task allocation model based on improved particle swarm optimization[J]. Application Research of Computers, 2020, 37(9): 2698–2700.
    [24] RODRIGUES L L, SOLÍS-CHAVES J S, VILCANQUI O A C, et al. Predictive incremental vector control for DFIG with weighted-dynamic objective constraint-handling method-PSO weighting matrices design[J]. IEEE Access, 2020, 8: 114112–114122. doi: 10.1109/ACCESS.2020.3003285
    [25] MADVAR H R, DEHGHANI M, MEMARZADEH R, et al. Derivation of optimized equations for estimation of dispersion coefficient in natural streams using hybridized ANN with PSO and CSO algorithms[J]. IEEE Access, 2020, 8: 156582–156599. doi: 10.1109/ACCESS.2020.3019362
    [26] 葛家理. 现代油藏渗流力学原理[M]. 北京: 石油工业出版社, 2001.

    GE Jiali. The modern mechanics of fluid flow oil reservoir[M]. Beijing: Petroleum Industry Press, 2001.
    [27] 李士伦. 天然气工程[M]. 北京: 石油工业出版社, 2008.

    LI Shilun. Natural gas engineering[M]. Beijing: Petroleum Industry Press, 2008.
    [28] 刘国良,廖伟,张涛,等. 呼图壁大型储气库扩容提采关键技术研究[J]. 中外能源,2019,24(4):46–53.

    LIU Guoliang, LIAO Wei, ZHANG Tao, et al. Research on key technologies for dilatancy and recovery improving in Hutubi large-scale gas storage[J]. Sino-Global Energy, 2019, 24(4): 46–53.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 修回日期:  2022-06-06
  • 网络出版日期:  2022-11-14

目录

    /

    返回文章
    返回